An Extension of the Nested Partitions Method
EBERT BREA
points
A
We
a.
OBJECTIVE
f(x) =
2Xn−1
i=0
1+ (x(2i+1) +x(2i+2) +1)2
+3x(2i+1)
2
−14x(2i+2) +6x(2i+1)x
(2i+2)
+3x(2i+2)
2
)
·
30+ (2x(2i+1) −3x(2i+2))2
18−32x(2i+1) +12x(2i+1)
2
+48x(2i+2) −36x(2i+1)x
(2i+2)
+27x(2i+2)
2
,
(39a)
and
f(y) =
2Xm−1
i=0
1+
y(2i+1)
10
+
y(2i+2)
10
+1
2
·
19−14
y(2i+1)
10
+3
y(2i+1)
10
2
−14
y(2i+2)
10
+6
y(2i+1)
10
y(2i+2)
10
+3
y(2i+2)
10
2!!
·
30+
2
y(2i+1)
10
−3
y(2i+2)
10
2
·
18−32
y(2i+1)
10
+12
y(2i+1)
10
2
+48
y(2i+2)
10
−36
y(2i+1)
10
y(2i+2)
10
+27
y(2i+2)
10
2!!
.
(39b)
BOUND
(−2.5,...,−2.5;−25,...,−25)t;
u =
(40a)
(40b)
(2.0,...,2.0;20,...,20)t.
OPTIMUM
zt =
|
{z
}
2n
;0,−10,...,0,−10
|
{z
}
2m
),
(41)
and
f(ˆz)
(42)
b.
OBJECTIVE
f(z)
Xn
i=1
x(i)
4
4
−
x
(i)
−2
2
+
Xm
i=1
y(i)
4
4
−
y
(i)
−2
2
(43)
BOUND
(44a)
(44b)
Revista
Semestre
ISSN
ISSN:
133