An Extension of the Nested Partitions Method
EBERT BREA
Function Integer
Uniform(¯a1,¯b1, ¯a2,¯b2, n)
Given:
¯a1 ∈−Z:
s=I(1)
Output: a uniformly distributed random
w(¯a1,¯b1, ¯a2,¯b2, n):
Calculate:
θ =
1
2
;
x =
Let x ←−x +
return ⌊x⌋;
Figure 23.
Double integer uniform distribution function
Function depth
Given:
The
lσ(i) ≤−x(i) ≤−u(iσ ),
the
l(i) ≤−x(i) ≤−u(i),
Declare:
d =
|
{z
}
n
;
|
{z
}
m
)t ∈−Rn ×−Zm;
Output: an updated depth vector d;
Function D(k, n, m, σ(k), Θ):
switch k do
case k =
for j ←−
d(j) ←−u(j) −−
for j ←−n +
d¯(j) ←−u¯(j) −−
other wise do
for j ←−
d(j) ←−u(jσ ) −−
for j ←−n +
d¯(j) ←−u¯(jσ ) −−
return d
Figure 24.
Revista
Semestre
ISSN
ISSN:
139