An Extension of the Nested Partitions Method
EBERT BREA
ACKNOWLEDGMENTS
This
work

was

supported

in

part

by

the

Centro

de
Investigación
y

Desarrollo

de

Ingeniería(CIDI)

of

the
Universidad
Católica

Andrés

Bello.

Special

thanks

are
due
to

Professor

María

I.

López,

Director

of

the

CIDI

for
her
efforts

in

obtaining

the

resources

for

this

research.
He
also

thanks

Mr.

Rolando

Andrade

for

coding

the

al-
gorithm
under

C++,

and

the

two

anonymous

reviewers
for
very

helpful

comments

and

suggestions

for

clarifying
the
presentation

of

this

article.
REFERENCES
[1]
Floudas,
C.

A.

Nonlinear

and

mixed-integer

optimiza-
tion:
fundamentals

and

applications.

New

York,
Oxford
University

Press,

1995.
[2]
Grossmann,
I.

E.

and

Z.

Kravanja,“Mixed-Integer

Non-
linear
Programming:

A

Survey

of

Algorithms

and

Ap-
plications”,
pp.

73–100.

New

York,

NY:

Springer

New
York,
June

1997.
https://doi.org/10.1007/978-1-4612-1960-6_5
[3]
Grossmann,
I.

E.

“Review

of

Nonlinear

Mixed-Integer
and
Disjunctive

Programming

Techniques”,

Opti-
mization
and

Engineering,

vol.

3,

no.

3,

pp.

227–252,
2002.
https://doi.org/10.1023/A:1021039126272
[4]
Tawarmalani,
M.

and

N.

V.

Sahinidis,

Convexification
and
global

optimization

in

continuous

and

mixed-
integer
nonlinear

programming:

theory,

algorithms,
software,
and

applications.

Nonconvex

optimization
and
its

applications;

v.

65,

Dordrecht

Boston:

Kluwer
Academic
Publishers,

2002.
[5]
Tawarmalani,
M.

and

N.

V.

Sahinidis,

“Global

op-
timization
of

mixed-integer

nonlinear

programs:

A
theoretical
and

computational

study”,

Mathematical
Programming,
vol.

99,

no.

3,

pp.

563–591,

2004.
https://doi.org/10.1007/s10107-003-0467-6
[6]
Brea,
E.

Extensiones

del

método

de

Nelder

Mead

a
problemas
de

variables

enteras

y

enteras

mixtas,

tech.
rep.,
Universidad

Central

de

Venezuela,

Septiembre
2009.
Trabajo

de

Ascenso

para

categoría

de

Profesor
Titular.
[7]
Brea,
E.

“Una

extensión

del

método

de

Nelder

Mead
a
problemas

de

optimización

no

lineales

enteros

mix-
tos”,
Revista

Internacional

de

Métodos

Numéricos
para
Cálculo

y

Diseño

en

Ingeniería,

vol.

29,

pp.

163–
174,
July

2013.
https://doi.org/10.1016/j.rimni.2013.06.005
[8]
Brea,
E.

(2016

July)

On

the

Performance

of

the

Mixed
Integer
Randomized

Pattern

Search

Algorithm,

in

The
13th
International

Congress

on

Numerical

Methods
in
Engineering

and

Applied

Sciences

(Y.

González,
E.
Dávila,

V.

Duarte,

M.

Candal,

O.

Pelliccioni,
J.
Darías,

and

M.

Cerrolaza,

eds.),

vol.

1,

(Caracas,
Venezuela),
pp.

Op

61–Op

72.
[9]
Brea,
E.

(2017

April).

Game

of

Patterns:

An

approach
for
solving

mixed

integer

nonlinear

optimization

prob-
lems,
in

International

Congress

on

Industrial

Engi-
neering
and

Operations

Management

(IEOM

2017),
Bogota,
Colombia.
http://ieomsociety.org/bogota2017/proceedings
[10]
Brea,
E.

“On

the

mixed

integer

randomized

pattern
search
algorithm”,

Revista

de

la

Unión

de

Matemáti-
cos
Argentinos,

vol.

60,

pp.

485-503,

September

2019.
https://doi.org/10.33044/revuma.v60n2a14
[11]
Kantor,
I.,

J.-L.

Robineau,

H.

Bütün,

and

F.
Maréchal,
“A

mixed-integer

linear

programming

for-
mulation
for

optimizing

multi-scale

material

and

en-
ergy
integration”,

Frontiers

in

Energy

Research,

vol.

8,
pp.
49.1–49.20,

April

2020.
https://doi.org/10.3389/fenrg.2020.00049
[12]
Jalota,
H.

and

M.

Thakur,

“Genetic

Algorithm

De-
signed
for

Solving

Linear

or

Nonlinear

Mixed-Integer
Constrained
Optimization

Problems”,

International
Proceedings
on

Advances

in

Soft

Computing,

Intelli-
gent
Systems

and

Applications,

(Singapore),

pp.

277–
290,
Springer

Singapore,

December

2018.
https://doi.org/10.1007/978-981-10-5272-9_27
[13]
Deep,
K.,

K.

P.

Singh,

M.

Kansal,

and

C.

Mohan,
“A
real

coded

genetic

algorithm

for

solving

integer
and
mixed

integer

optimization

problems”,

Applied
Mathematics
and

Computation,

vol.

212,

pp.

505–
518,
June

2009.
https://doi.org/10.1016/j.amc.2009.02.044
[14]
Schlüter,
M.,

J.

A.

Egea,

and

J.

R.

Banga,

“Extended
ant
colony

optimization

for

non-convex

mixed

integer
nonlinear
programming”,

Computers

&

Operations
Research,
vol.

36,

pp.

2217–2229,

July

2009.
https://doi.org/10.1016/j.cor.2008.08.015
[15]
Mohammadi,
M.,

S.

N.

Musa,

and

A.

Bahreininejad,
“Optimization
of

mixed

integer

nonlinear

economic

lot
scheduling
problem

with

multiple

setups

and

shelf

life
using
metaheuristic

algorithms”,

Advances

in

Engi-
neering
Software,

vol.

78,

pp.

41–51,

December

2014.
https://doi.org/10.1016/j.advengsoft.2014.08.004
[16]
Cardoso,
M.

F.,

R.

L.

Salcedo,

S.

F.

de

Azevedo,

and
D.
Barbosa,

“A

simulated

annealing

approach

to

the
solution
of

MINLP

problems”,

Computers

&

Chemical
Engineering,
vol.

21,

pp.

1349–1364,

April

1997.
https://doi.org/10.1016/S0098-1354(97)00015-X
[17]
Gupta,
O.

K.

and

A.

Ravindran,

“Branch

and

bound
experiments
in

convex

nonlinear

integerprogramming”
Management
Science,

vol.

31,

pp.

1533–1546,

De-
cember
1985.

http://www.jstor.org/stable/2631793
[18]
Shi,
L.

and

S.

Ólafsson,

“Nested

Partitions

method

for
global
optimization”,

Operations

Research,

vol.

48,
pp.
390–407,

May

2000.
https://doi.org/10.1287/opre.48.3.390.12436
Revista
TEKHNÉ

No

25.1
Semestre
octubre-febrero

2022
ISSN
electrónico:

2790-5195
ISSN:
1316-3930
140