An Extension of the Nested Partitions Method
EBERT BREA
backtracking
S(σ(k)).
p
(k,k+1)
k
=
1,
(22)
where:
ϕ =
Mσν
Mσν +N
;
(23a)
γk =
Qn
ℓ=1
u(ℓ)−l(ℓ)
2k+1
+
Qm
ℓ=1
l ¯
u(ℓ)−¯l(ℓ)
2k+1
m
Qn
ℓ=1
u(ℓ)−l(ℓ)
2k
+
Qm
ℓ=1
l
u¯(ℓ)−¯l(ℓ)
2k
m,
(23b)
Proof.
p
(k,k+1)
k
(24)
Using
p
(k,k+1)
k
(25)
Under
ϕ =
Mσν
Mσν +N
.
(26)
On
got
γk =
V[σ˜i(k)]
V[˜σ(k)]
=
Qn
ℓ=1
u(ℓ)−l(ℓ)
2k+1
+
Qm
ℓ=1
l
u¯(ℓ)−¯l(ℓ)
2k+1
m
Qn
ℓ=1
u(ℓ)−l(ℓ)
2k
+
Qm
ℓ=1
l ¯
u(ℓ)−¯l(ℓ)
2k
m,
for
{1,...,Mσ},
Pr{Σi |−F}−=
Mσ
1
!
γk(1−γk)Mσ−1,
By
p
(k,k+1)
k
=
Besides,
state
p
(0,1)
0
=
Therefore,
π(k)
Xkˆ
ℓ=0
π(ℓ)
(30)
where
δ[k −ℓ]
1,
(31)
Note
Revista
Semestre
ISSN
ISSN:
127