An Extension of the Nested Partitions Method
EBERT BREA
u¯
(j)
σ(k)
&
u¯(j)
2k
'
.
(17b)
Note
k=0
{D(κ)
k=0,
Observe
p(k,ℓ)
κ
=
denote
p
(k,ℓ)
k
=Pr{D(k +1)
∀−
(19)
Figure
transition
(k,ℓ)
k
resent
d˜(0)
d˜(1)
d˜(2)
···−
...
d˜(k−1)
d˜(k)
p
(1,0)
1
p
(2,0)
2
p
(k−1,0)
k−1
p
(k,0)
k
p
(k,k+1)
k
...
p
(0,1)
0
p
(1,2)
1
p
(2,3)
2
p
(k−2,k−1)
k−2
p
(k−1,k)
k−1
Figure 9.
Condition 2
events.
Definition 8 (Hypervolume of a region)
V[σ(k)]
Yn
ℓ=1
u
(ℓ)
σ(k)
(ℓ)
σ(k)
+
Ym
ℓ=1
u¯
(ℓ)
σ(k)
(ℓ)
σ(k)
,
∀k ∈−N.
(20)
Note
V[˜σ(k)]
Yn
ℓ=1
u(ℓ)
2k
!
+
Ym
ℓ=1
&
u¯(ℓ)
2k
'
,
∀k ∈−N.
(21)
Based
following
proposition. We
Revista
Semestre
ISSN
ISSN:
126