An Extension of the Nested Partitions Method
EBERT BREA
Procedure Sampling
Let ˆi ←−
if k ≥−
for ℓ ←−
for ℓ¯←−
(b(n−1),
for j ←−
if b(j−1) =
x(j) ←−u(ˇx(2,j), xˇ(3,j), s)
else
x(j) ←−w(ˇx(1,j), xˇ(2,j), xˇ(3,j), xˇ(4,j), s)
for j ←−
if ¯b(j−1) =
y(j) ←−u(ˇ¯
else
y(j) ←−
w(ˇy(1,j), yˇ(2,j), yˇ(3,j), yˇ(4,j), s)
Let zst ←−
|
{z
}
n
;
|
{z
}
m
)
Measure the
s
Let fˆ(ˆz)
Let zˆ
Let ˆi ←−Mσ +
for d ←−
switch d do
case d=1 do
Let ℓ =
Let ℓ¯=
case d=2 do
Let ℓ =
Let ℓ¯=
(b(n−1),
for j ←−
if b(j−1) =
x(j) ←−u(ˇx(2,j), xˇ(3,j), s)
else
x(j) ←−w(ˇx(1,j), xˇ(2,j), xˇ(3,j), xˇ(4,j), s)
for j ←−
if ¯b(j−1) =
y(j) ←−
else
y(j) ←−
w(ˇy(1,j), yˇ(2,j), yˇ(3,j), yˇ(4,j), s)
Let zst ←−
|
{z
}
n
;
|
{z
}
m
)
Measure the
s
Let f(ˆˆ
Let zˆ
Let ˆi ←−Mσ +
Figure 20.
Sampling procedure, part i
Revista
Semestre
ISSN
ISSN:
137