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Abstract

This article addresses a new extension of the well known Nested Partitions (NP) method for globally solving mixed
integer nonlinear optimization problems under bound constraints. The extension, called Mixed Integer Nested
Partitions (MINP) method, is based on the same stages of the NP method at each iteration, i.e.: partitioning;
random sampling; identifying of the promising region, which presumes to contain at least a global solution of the
problem; and verifying of the stopping rule. Nevertheless, both a new scheme of partitioning and a stopping rule
proposal are here presented as main contributions to mixed integer programming. The article has also included
a theoretical study of the behavior of the MINP method from the point of view of the Markov chain. Numerical
examples have made sure the correct functionality of the algorithmic method and its new stopping rule.
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Una Extensión del Método de Particiones Anidadas

Resumen

Este artículo aborda una nueva extensión del conocido método de Particiones Anidadas (PA) para resolver
globalmente problemas de optimización no lineales enteros mixtos bajo restricciones de bandas. La extensión,
llamada método de Particiones Anidadas Enteros Mixtos (PAEM), se basa en las mismas etapas del método
PA en cada iteración, es decir: partición; muestreo aleatorio; identificación de la región prometedora, que
presume contener al menos una solución global del problema; y verificación de la regla de parada. Sin embargo,
tanto un nuevo esquema de partición como una propuesta de regla de parada que se presentan aquí son las
principales contribuciones a la programación entera mixta. El artículo también ha incluido un estudio teórico del
comportamiento del método PAEM desde el punto de vista de la cadena de Markov. Ejemplos numéricos han
asegurado la correcta funcionalidad del método algorítmico y su nueva regla de parada.

Palabras clave: método de Particiones Anidadas, programación no lineal entera mixta, optimización global.

Uma Extensão do Método de Partições Aninhadas

Resumo

Este artigo aborda uma nova extensão do conhecido método de Partições Aninhadas (PA) para resolver
globalmente problemas de otimização não linear de inteiros mistos com restrições. A extensão, chamada método
de Partições Aninhadas Inteiras Mistas (PAIM), é baseada nos mesmos estágios do método PA em cada iteração:
particionamento; amostragem aleatória; identificação da região promissora, que presume conter pelo menos
uma solução global do problema; e verificação do critério de parada. Não obstante, tanto um novo esquema de
particionamento como uma proposta de critério de parada são aqui apresentados como principais contribuições
à programação inteira mista. O artigo também incluiu um estudo teórico do comportamento do método PAIM
do ponto de vista da cadeia de Markov. Exemplos numéricos garantem o correto funcionamento do método
algorítmico e do novo critério de parada.

Palavras chave: Método de Partições Aninhadas, programação não linear inteira mista, otimização global.
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i. INTRODUCTION

Consider the following bound constrained mixed integer
nonlinear minimization problem:

Problem 1

minimize
z∈Rn×Zm

f(z); (1a)

subject to

l � z � u, (1b)

where: z will henceforward denote any mixed integer
vector, i.e., z = (z(1), . . . , z(n);z(n+1), . . . , z(n+m))t, in
the (n+m)-multidimensional Euclidean space R

n ×Z
m;

f(z) : Rn ×Z
m → R is a nonlinear function, for which

analytical and explicit mathematical expression cannot
be obtained; and l,u ∈ R

n ×Z
m respectively are both

the lower and upper bounds of the mixed integer feasible
region Θ.
Note that we have here denoted by the symbol � for
indicating that a vector precedes to another vector, what
will be defined later.
In this case, the objective function must be evaluated by
an appropriate simulation model or by solving a nonlin-
ear system equations, and besides the objective function
has no gradient function, because the objective function
domain is defined in the set mixed integer Rn ×Z

m.
Nowadays this kind of problems has had an important
presence in the industry, due to fact the enormous
challenges facing the industry, which must find answers
for efficiently designing equipment and systems, and
therefore friendly with the environment, and at the same
time taking into account the economic sustainability.
Examples of these problems in the branch of chemical
engineering are presented by Floudas [1], who intro-
duces an important number of mixed integer nonlin-
ear optimization problems on: design, scheduling and
planning of batch processes; heat exchanger network
synthesis, etc. Grossmann and Kravanja also present
an overview of the applications in many areas within the
engineering process [2, 3]. Tawarmalani and Sahinidis
also address the mixed integer nonlinear programming
through a rigorous study presented in [4, 5]. For his
part, Brea has found optimum solutions for the design of
equipment making use of the mixed integer optimization
viewpoint [6, 7], and he also has developed a new meta-
heuristic based on a game framework of random pattern
search algorithms, offering a new approach for globally
solving mixed integer nonlinear problems [8, 9, 10].
Another example worthwhile of commenting, it is the
recently published article by Kantor and coworkers, who

propose a model for finding an integrated solution, which
allows the industry to provide optimum integral solutions
within plants and potential industrial symbiosis options,
using a mixed integer linear programming approach [11].
There exists a vast amount of algorithmic optimization
methods via a wide variety metaheuristic approaches
for globally solving constrained and unconstrained mixed
integer nonlinear optimization problems, which could be
grouped in two large classes, namely: the bio-inspired
metaheuristic algorithms and the non bio-inspired meta-
heuristic algorithms. Among the bio-inspired meta-
heuristic algorithms, it can be included: Genetic Al-
gorithms [12, 13]; Ant Colony [14]; Particle Swarm
optimization, and Artificial Bee Colony [15], whereas in
the group of non bio-inspired metaheuristic algorithms,
we have: Simulated Annealing [16]; Branch-and-Bound
method [17], Nested Partitions method [18]; Game of
Patterns [9], etc.
The best of our knowledge, there exists only one pub-
lished article concerning an extension the Nested Parti-
tions method for globally solving mixed integer optimiza-
tion problems [19], which is based on a hybrid of the
Nested Partitions method [18, 20] and the well known
CPLEX [21]. Nevertheless, we here propose a new ex-
tension of the Nested Partitions method for finding global
solutions to bound constrained mixed integer nonlinear
optimization problems based on the main idea of the
Nested Partitions, namely: partition of the promising
region; sampling of each subregion from partitioned
promising region and the surrounding region to the
promising region; and identification of the next promising
region, which presumes to have a global solution of
our problem. Nonetheless, the algorithmic extension,
which has been called Mixed Integer Nested Partitions
(MINP) method includes: both a novel partitions scheme
and a new algorithm stopping rule represent the main
contributions of this article.
Numerical examples have allowed us to assert that
the MINP method has successfully identified promising
regions, in a relative small amount of iterations. Nev-
ertheless, the MINP method has resulted to be a very
expensive method, from the viewpoint of times the ob-
jective function requires to be evaluated by the algorithm
for globally solving this kind of problems.
Due to the fact that the MINP method has resulted to be
an expensive algorithm from the viewpoint of the number
of function evaluations for identifying at least a global
solution, we have therefore considered to undertake fur-
thermore research in the future, for hybridizing the MINP
method with some local search method, e.g., the mixed
integer randomized pattern search algorithm developed
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by Brea [10], and is thought that by this via, it could be
improved its performance.

The rest of the article is organized as follows. Next
section introduces basic concepts and main idea of
the NP method [18, 20] through a very simple didactic
example in R

2. Section iii presents the theoretical main
results of the MINP method, which are based on the NP
method approach. A pseudocode of the MINP method
is proposed in Section iv, whereby its procedures and
functions have been included in appendices. Section
v addresses the main properties of the MINP method,
which has been studied from a Markov chain viewpoint.
Section vi presents a software, which operates the MINP
method for taking r independent samplings of perfor-
mance measurements of the MINP method. Section
vii shows a set of numerical experiments for statistically
analyzing the performance of the MINP method. Finally,
Section viii discusses advantages and disadvantages of
the MINP method, and future research for improving
performance of the MINP method. A list of mixed integer
nonlinear problems for testing the MINP method has
been included in Appendix A.

ii. THE NESTED PARTITIONS METHOD

With the aim of giving a didactic explanation of the NP
method principles, consider the following two dimen-
sional real optimization example.

Example 1

minimize
x∈R2

f(x) (2a)

subject to

(1,1)t � x � (9,9)t, (2b)

where f(x) : R2 → R is a nonlinear objective function.

The feasible region given by (2b) is indubitably depicted
by a square region with both width and height equal to 8
units, such as is shown in Figure 1 in green color.

Note that this region is considered the initial promising
region σ(0), because the entire feasible region at least
contains, and without any discussion, a global solution
of the problem.

σ(0)
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x(1)

x(2)

Figure 1. Entire feasible region, promising region σ(0)

As can be seen from Figure 2, the promising region
σ(0) is partitioned or divided into 4 subregions, yielding
the set of subregions {σj(0)}4

j=1, and at this iteration
k = 0, there exists no surrounding region to σ(0), i.e.,
S(σ(0)) = ∅.

σ1(0)σ2(0)

σ3(0)σ4(0)
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Figure 2. Partitions of promising region σ(0)

According to the NP method [18], the algorithm takes
random trial points from each jth subregion, denoted by
σj(0), for estimating the next promising region by finding

an index ĵ, which indicates where the best function value
has come from, as it can then be seen from Figure 3 by
a red cross on σ3(0), i.e., ĵ = 3, and hence, the next
promising region will be given by the subregion σ3(0).
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Figure 3. Sampling of each jth subregion {σj(0)}4
j=1

We must say that if at this stage, the NP method identi-
fies more than one subregion likewise promising, the NP
method will arbitrarily break this draw, for choosing just
one subregion, of course.
In the example shown from Figure 4, we have hence
assumed that the promising region resulted to be σ3(0),
which will therefore be the next promising region σ(1),
and so starts a next iteration of the NP method.

S(σ(1))

σ(1)
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x(2)

Figure 4. promising region σ(1)

The partitions of the promising region σ(1), into a new
set of four subregions {σj(1)}4

j=1, and that had been
denoted by σ3(0) at the 0th iteration, which is depicted in
Figure 5 in green color, and also the surrounding region
to σ(1), that is here denoted by S(σ(1)), which is shown
by the yellow area of the figure.
Figure 6 displays by points the set of random trial points
that have been taken from each jth subregion σj(1), and
from the current surrounding region S(σ(1)). Here, we
can say that we have 5 subregions, namely: {σj(1)}4

j=1;

and σ5(1) = S(σ(1)), what allows the NP method to
identify the best subregion, this means, if the best
subregion results î ∈ {1,2,3,4} the algorithm go toward
to next iteration, where the promising region is therefore
smaller that the current promising region, whilst if î = 5,
then the NP method backtracks to the initial promising
region σ(0).
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Figure 5. Partitions of promising region σ(1)

We have assumed that the sampling procedure yielded
that the best function value belongs to the subregion
σ2(1), which has thus been marked by a red cross on
subregion σ2(1), and therefore ĵ = 2.
We must point out that two backtracking rules have been
proposed by Shi and Ólafsson, namely: the first one
causes a backtracking process to the previa promising
region; and the second one effectuates a backtracking
process to the entire feasible region [18].
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Figure 6. Sampling of each jth subregion {σj(1)}4
j=1

As is shown in Figure 7, we have assumed that the best
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objective function value comes from σ2(1), what allows
us to identify the subregion σ2(1) as the next promising
region, namely, σ(2) = σ2(1).

S(σ(2))

σ2(1) = σ(2)
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Figure 7. promising region σ(2)

This procedure is recurrently carried out until some
stopping criterion is met.
Shi and Ólafsson have proposed two stopping rules
for the NP method, namely: the first one is based on
ordinal optimization concepts; and the second one has
been developed applying concepts of order statistics for
objective function values [22].

iii. THE MIXED INTEGER NESTED

PARTITIONS METHOD

The MINP method has been designed for globally solv-
ing mixed integer bound constrained nonlinear problems.
For that, we have developed the MINP method based
on similarity stages to the NP method, namely: i) parti-
tioning of the promising region σ(k) into Mσ subregion
σi(k) for all i ∈ {ℓ}Mσ

ℓ=1; ii) sampling of the subregion
σi(k) by random mixed integer trial points from each
subregion; iii) identifying of the next promising region
σ(k + 1) = σî(k), where î denotes the index where the
best value of the objective function has come from; iv)
verifying whether the MINP method will go next iteration
or it will stop, and as a result of this verifying stage, i.e.,
the algorithm will accordingly test at each iteration, if the
stopping rule is met.

a. PRELIMINARIES

This subsection deals with some definitions for famil-
iarizing the reader with concepts and notations that
have been included both in the explanation of the MINP
method and its pseudocode.

Definition 1 (Precedent vector) Let z1 and z2 be two

mixed integer vectors, i.e., z1, z2 ∈ R
n ×Z

m. It is said

that z1 precedes z2 in order, and will be denoted by

z1 � z2, if their respective components z
(i)
1 ≤ z

(i)
2 for

each i ∈ {ℓ}n+m
ℓ=1 .

Definition 2 (Subsequent vector) Let z1 and z2 be two

mixed integer vectors, i.e., z1, z2 ∈ R
n ×Z

m. It is said

that z1 succeeds z2 in order, and will be denoted by

z1 � z2, if their respective components z
(i)
1 ≥ z

(i)
2 for

each i ∈ {ℓ}n+m
ℓ=1 .

The relationship between the vectors that have been
defined above are respectively called strictly precedes
or strictly succeeds, if the above inequalities are true as
strict inequalities for all ith components of z1 and z2.

Definition 3 (Promising region) Let σ(k) be a

nonempty promising region at the current iteration k
of the MINP method. It is then said that σ(k) is given by

σ(k) = {z ∈R
n ×Z

m : lσ(k) � z � uσ(k)}, ∀k ∈N, (3)

where: k hereafter depicts the counter of iteration that

has been carried out by the MINP method from the initial

promising region σ(0) = Θ = {z ∈R
n ×Z

m : l � z � u};

lσ(k),uσ(k) ∈ R
n × Z

m respectively are the lower and

upper bound vector of the kth promising region σ(k),

which presumes to contain at least a global solution of

Problem 1.

Note that according to Definition 3, each kth promising
region must be a nonempty, because it presumes to
contain at least a global solution of Problem 1. Moreover,
the smallest promising region, in the number of element
sense, that is contained on the feasible region of Prob-
lem 1, is a singleton set.

Definition 4 (Subregion) Let σi(k) denote the ith sub-

region of the current kth promising region. It is then

said that σi(k) ⊂ σ(k) for each i ∈ {ℓ}Mσ

ℓ=1, and σi(k) ∩

σj(k) = ∅ for all i 6= j and i, j ∈ {ℓ}Mσ

ℓ=1, where Mσ

denotes the number of subregion.

Definition 5 (Surrounding region) Let S(σ(k)) be the

surrounding region to the kth promising region σ(k). It

is then said that S(σ(k)) = σ(0) \ σ(k).

Revista TEKHNÉ No 25.1
Semestre octubre-febrero 2022

ISSN electrónico: 2790-5195
ISSN: 1316-3930

120



An Extension of the Nested Partitions Method

EBERT BREA

Definition 6 (Depth vector) Let d(k) denote the kth

mixed integer depth vector of the current kth promising

region. It is then said that d(k) = uσ − lσ, i.e.,

d(k) =
(

u
(1)
σ(k) − l

(1)
σ(k), . . . ,u

(n+m)
σ(k) − l

(n+m)
σ(k)

)t
,∀k ∈ N.

(4)

Note that according to above definitions: i) σ(0) is the
feasible region Θ of Problem 1; ii) the kth promising
region σ(k) is a convex hull, which is bounded by
lσ(k) � z � uσ(k), and it will hereafter be simplified its

notation by lσ � z � uσ; and iii) σ(k) =
⋃Mσ

i=1 σi(k).
Finally, let κ ∈ N be the cumulative counter iterations
that are executed by the MINP method, which always
is greater than or equal to k.

b. ON THE PARTITIONS OF THE PROMISING
REGION

We now turn our attention to the proposed procedure of
partitioning of the kth promising region σ(k), which is
based on a novel method for getting the boundaries of
each ith subregion σi(k) in the current promising mixed
integer region, as is shown in Figure 18 on page 135.

Proposition 1 Let σ(j)(k) = {x ∈ R : l
(j)
σ ≤ x ≤ u

(j)
σ }

be the jth interval of real number or set of the jth

real value component that defines the current promising

mixed integer region σ(k) ∈ Z
m. Then, an adequate

partition of the jth component of σ(j)(k) into two disjoint

subsets is given by

σ
(j)
1 (k) = {x ∈ R : l(j)

σ ≤ x ≤ δ(j)
σ }; (5a)

σ
(j)
2 (k) = {y ∈ R : δ(j)

σ < y ≤ u(j)
σ }, (5b)

where δ
(j)
σ = (l

(j)
σ + u

(j)
σ )/2 is the midpoint of the rect

line segment defined by both l
(j)
σ and u

(j)
σ .

Proof. We know that a partition of an integer number set
into two subsets must then yield two disjoint subsets and
the union of both subsets must contain all elements of
the original set.

As can be seen: first, σ
(j)
1 (k)∩σ

(j)
2 (k) = ∅, and second,

σ(j)(k) = σ
(j)
1 (k) ∪ σ

(j)
2 (k), what has allowed us to

partition the set σ(j)(k) properly.

Proposition 2 Let σ̄(j)(k) = {y ∈ Z : l̄
(j)
σ ≤ y ≤ ū

(j)
σ }

be the jth interval of integer number or set of the

jth integer value component that defines the current

promising mixed integer region σ̄(k) ∈ Z
m. Then, an

appropriate partition of the jth component of σ̄(j)(k) into

two disjoint subsets is given by







[l̄
(j)
σ , δ(j)] ∪ [δ(j) + 1, ū

(j)
σ ], if ⌊δ(ℓ)⌋ = ⌈δ(ℓ)⌉;

[l̄
(j)
σ ,⌊δ(ℓ)⌋] ∪ [⌈δ(ℓ)⌉, ū

(j)
σ ], if ⌊δ(ℓ)⌋ 6= ⌈δ(ℓ)⌉,

(6)

where δ
(j)
σ = (l̄

(j)
σ + ū

(j)
σ )/2 is the midpoint of the rect

line segment defined by l̄
(j)
σ and ū

(j)
σ .

Proof. Because we have two cases, the first one,
when δ(j) = (l̄

(j)
σ + ū

(j)
σ )/2 is an integer number, and

the second one, when δ(j) is a no integer number, these
cases will separately be proved.
Part i) if δ(j) is an integer number, i.e., ⌊δ(ℓ)⌋ = ⌈δ(ℓ)⌉

the set given by σ̄(j)(k) = {y ∈ Z : l̄
(j)
σ ≤ y ≤ ū

(j)
σ }

can be partitioned into two subsets, namely, σ̄
(j)
1 (k) =

{y ∈ Z : l̄
(j)
σ ≤ y ≤ δ(j)} and σ̄

(j)
2 (k) = {y ∈ Z : δ(j) +

1 ≤ y ≤ ū
(j)
σ }, where both mentioned subsets indeed

are disjoint, i.e., σ̄
(j)
1 (k) ∩ σ̄

(j)
2 (k) = ∅, and σ̄(j)(k) =

σ̄
(j)
1 (k) ∪ σ̄

(j)
2 (k).

Part ii) In the case when δ(j) is a no integer number,

then the subsets σ̄
(j)
1 (k) = {y ∈ Z : l̄

(j)
σ ≤ y ≤ ⌊δ(j)⌋}

and σ̄
(j)
2 (k) = {y ∈ Z : ⌈δ(j)⌉ ≤ y ≤ ū

(j)
σ } are such that

σ̄
(j)
1 (k)∩ σ̄

(j)
2 (k) = ∅, and σ̄(j)(k) = σ̄

(j)
1 (k)∪ σ̄

(j)
2 (k).

Based on Propositions 1 and 2, it was designed Parti-
tioning procedure shown in Figure 18.

Remark 1 Assume, without any loss of generality, that

Partitions procedure in Figure 18 is conducted on any

kth promising region σ(k) for solving Problem 1, as a

result of Propositions 1 and 2. Then Partitions procedure

yields Mσ = 2n+m disjoint subregions from the current

promising region σ(k).

Proof. Due to the fact that according to Partitioning
procedure in Figure 18, at each kth iteration, both each
of the n real components is divided by into 2 subsets and
each of the m integer components is also divided into 2
subsets, yielding respectively at each iteration 2n and 2m

subsets, thus, this fact allows us to obtain Mσ = 2n+m.

As can be seen from Partitions procedure in Figure 18,
at each kth iteration a set of {σi(k)}Mσ

i=1 subregions from
the current promising region σ(k) are mutually disjoint
subsets, i.e., σi(k) ∩ σi(k) = ∅ for all i 6= j and i, j ∈
{ℓ}Mσ

ℓ=1, and moreover σ(k) =
⋃Mσ

i=1 σi(k).
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c. ON THE STOPPING RULE

As was mentioned in the introduction, one of the con-
tributions of this research has been the inclusion of a
new stopping rule, which is based on the depth vector
d(k) of the current promising region, without considering
any objective function value, because our approach is
only based on partitioning scheme, leaving for another
research the study of stopping rule based on statistical
viewpoints, such as statistical considerations on the
feasible global minimum function value applying non-
standard parametric inference. A good approach on non-
standard parametric inference is introduced by Cheng
[23], which could be taken into account for using it
together with the concepts of order statistics presented
by De Haan [24].
Taking into account the main pseudocode of the MINP
method in Figure 8 on page 124, we can notice that when
d(k + 1) � d(k) holds, and the î ∈ {ℓ}Mσ

ℓ=1 the algorithm
carries out a new partitioning on the new promising
region, otherwise, as a result of that î = Mσ + 1, the
algorithm backtracks to the entire feasible region, and it
restarts the iteration counter by letting k be equal to 0.
Note that the surrounding to the promising region σ(k)
has been here denoted by σMσ+1(k), i.e., S(σ(k)) =
σMσ+1(k).
Since the MINP method estimates the current promising
region at each kth, the current depth mixed integer
vector d(k) can be then easily calculated, for being
afterward tested at the end of each kth iteration, and so
verifying whether ε � d(k) or not, whereby in the case
that ε � d(k) the MINP method will go to next iteration,
otherwise, the MINP method will stop.
We shall now focus on calculating the maximum num-
ber of iteration, denoted by k̂, that the MINP method
needs for stopping the algorithm, considering that any
backtracking operation has not been carried out during
the identification of a global solution to Problem 1.
Due to the fact that we have still no stopping rule for the
MINP method, it is reasonable to enunciate the following
condition.

Condition 1 Suppose that is executed the iterative loop

of the MINP method, that will afterward be shown in Fig-

ure 8, without considering any stopping rule for globally

solving Problem 1.

Lemma 1 Assume Condition 1 holds. Then the ith real

component of the mixed integer depth d(k) is given by

d(i)(k) =
u(i) − l(i)

2k
, ∀i ∈ {ℓ}n

ℓ=1,k ∈ N, (7)

where l,u ∈ R
n × Z

m respectively are the lower and

upper bound constrains given by (1b).

Proof. Due to the fact that the MINP method partitions
each ith component of the promising region into two
subsets, the ith real component is successively divided
by 2 at each kth, resulting the geometric series given
by (7), for each ith real component of the mixed integer
depth vector.

Lemma 2 Assume Condition 1 holds and the ex-

pected mixed integer depth vector ε is fixed to

(ǫ, . . . , ǫ;0, . . . ,0)t. The MINP method hence stops when

max
i∈{1,...,n}

(u(i) − l(i))

2k
< ǫ (8)

is met.

Proof. During the execution of the algorithm, successive
divisions by two are carried out, both to the real and
integer components, what allows us to assert that any
integer component d̄(i)(k) for all i ∈ {ℓ}m

ℓ=n+1 of the
mixed integer depth vector becomes 0, faster than any
real component d(i)(k) for all i ∈ {ℓ}n

ℓ=1 of the mixed
integer depth vector. Besides, all integer components
of the mixed integer vector d̄(i)(k) for all i ∈ {ℓ}m

ℓ=n+1
become 0 in a finite number of iteration k, whereas that
the real components d(i)(k) for all i ∈ {ℓ}n

ℓ=1 approach
to 0 when k → ∞. Since Lemma 1 holds, the depth
vector d(k) will therefore be precede to the expected
mixed integer depth vector ε, when (8) is met.
In what follows, we provide evidence that the proposed
stopping rule successfully works, avoiding an over itera-
tions of the algorithm, when the stopping rule had been
met, as a result that exists a positive probability that is
reached.

Theorem 1 Let k̂ = ⌈k⌉ be the closest integer greater

than or equal to k, assume Condition 1 holds, and

the expected mixed integer vector ε has been fixed to

(ǫ, . . . , ǫ; 0, . . . ,0)t. Then minimum number of required

iterations by the MINP method for being stopped, i.e.,

when d(k̂) ≺ ε has just been met, it is given by

k̂ =








log2






max
i∈{1,...,n}

(u(i) − l(i))

ǫ













. (9)
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Proof. Getting k by solving (8) from Lemma 2, the MINP

method stops at iteration k̂ given by (9).
Now, we shall pay attention on the estimation of the
probability of carrying out a backtracking operation to the
entire region Θ at any kth iteration, such that 0 < k < k̂.

Remark 2 Assume Condition 1 holds. Each kth promis-

ing region is therefore given by

σ(k) = {z ∈ R
n ×Z

m : lσ � z � uσ}, (10)

where lσ = (l
(1)
σ , . . . , l

(n)
σ ; l̄

(n+1)
σ , . . . , l̄

(n+m)
σ )t and uσ =

(u
(1)
σ , . . . ,u

(n)
σ ; ū

(n+1)
σ , . . . , ū

(n+m)
σ )t respectively are the

lower and upper mixed integer bounds of the kth promis-

ing region.

Proof. Since Condition 1 is always satisfied, at each
kth iteration is rightly partitioned the current promising
region σ(k) due to Propositions 1 and 2, what allow us
to describe exactly σ(k) by (10).
Note that by Partitioning procedure in Figure 18 clearly
defines each generated kth promising region σ(k).

Theorem 2 Suppose that there is no any stopping rule

for the MINP method. If ν and N are both positive

quantities, there will then exist a positive probability

that the algorithm goes forward in depth, getting a new

depth vector d(k + 1) that precedes to d(k), at any kth

iteration, i.e., Pr{d(k + 1) ≺ d(k)} > 0 for all k ∈ N.

Proof. Using Propositions 1 and 2, we clearly have that
the event {d(k + 1) ≺ d(k)} takes place with a positive
probability.
The next result shows how Theorem 2 allows us to affirm
that the MINP method does not over run for getting
a global solution, namely, it finishes with a positive
probability.

Corollary 1 Suppose Condition 1 holds for globally

solving Problem 1. Besides, assume that ν and N
are both positive quantities; and the expected mixed

integer vector ε is fixed to both real and integer no

negative components. Then the MINP method will meet

the stopping rule, i.e., d(k) ≺ ε in a limited number of

successive iterations with a positive probability.

Proof. Because of Theorem 2, there exists a positive
probability that the MINP method reaches the stopping
rule d(k) ≺ ε, and then it does not carry out any more
iterations, causing a stopping of the algorithm.
Further results on the behavior of the MINP method will
afterward be presented in next section.

d. ON THE PERFORMANCE MEASUREMENT

We now consider the issue of measuring the perfor-
mance of the MINP method, when it has been collected a
set of solutions that has been yielded from r independent
runs of the MINP method, under the same conditions.
For this reason, we shall here show the main results
on the proposed performance measurement, which was
introduced by Brea [25] for comparing the Game of
Patterns [9] versus two implementations of Genetic Al-
gorithms, when these last mentioned algorithms are
used for globally solving constrained nonlinear problems
in R

n

Proposition 3 Let p be a mixed integer bound con-

strained problem in R
n ×Z

m; let η(ℓ)(p,n,m) > 0 be

the number of times that the objective function has been

evaluated during ℓth run of the algorithm for searching of

a solution to Problem p; and let λ(ℓ)(p,n,m) ≥ 0 be the

distance between the true point or solution of Problem p,

and the best achieved solution by the MINP method at

the ℓth replication. Then, for each ℓ ∈ N+,

q(ℓ)(p,n,m) =
1

1 + η(ℓ)(p,n,m) ·λ(ℓ)(p,n,m)
, (11)

is on (0,1].

Proof. It suffices to verify the implication (11), due
to the fact that η(ℓ)(p,n,m) > 0 and λ(ℓ)(p,n,m) ≥ 0,
what easily allows us to prove that for each ℓth algo-
rithm run or also called replication is yielded a sampling
q(ℓ)(p,n,m) ∈ (0,1].

Of course, that any collection {q(ℓ)(p,n,m)}r
ℓ=1 of r

independent executions of the algorithm would then yield
an empirical distribution so far from being a normal
distribution, whereby a parametric statistical analysis,
under standard situations, of these data would be unsuit-
able for obtaining a right description of the here called
random variable quality, which will hereafter be denoted
by Q(p,n,m), and given by

Q(p,n,m) =
1

1 + N(p,n,m)L(p,n,m)
, (12)

where N(p,n,m) and L(p,n,m) respectively are the
random variables: number of function evaluation and dis-
tance to the true point, and whose distribution functions
are unknown.
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Algorithm. The Mixed Integer Nested Partitions Method

Initialization

Given:

the number of real components, n;
the number of integer components, m;
the problem minimize

z∈Rn×Zm
f(z),

subject to l � z � u,

where l, u ∈ R
n × Z

m, e.i.: l = (l(1)), . . . , l(n))
︸ ︷︷ ︸

n

; l̄(n+1)
, . . . , l̄

(n+m)

︸ ︷︷ ︸

m

)t and u = (u(1)), . . . , u(n))
︸ ︷︷ ︸

n

; ū(n+1)
, . . . , ū

(n+m)

︸ ︷︷ ︸

m

)t;

the number Mσ(0) of subregions of the current most promising region σ(0) = Θ;
the number of sample points Nj(k) from each jth subregion σj(k) at each kth iteration;

Choose:

an ε(i) ∈ R+ for each i ∈ {1, . . . , n};
an ε̄(i) ∈ N for each i ∈ {n+ 1, . . . , n+m}, what allows us to define the expected maximum depth of the mixed
integer vector, ε = (ε(1), . . . , ε(n)

︸ ︷︷ ︸

n

; ε̄(n+1)
, . . . , ε̄

(n+m)

︸ ︷︷ ︸

m

)t ∈ R
n
+ × N

m;

Declare:

the mixed integer depth vector d(k) = (d(1)(k), . . . , d(n)(k)
︸ ︷︷ ︸

n

; d̄(n+1)(k), . . . , d̄(n+m)(k)
︸ ︷︷ ︸

m

)t;

Let k = 0;
Calculate:

the initial mixed integer depth vector, e.i., d(0) = D(0, n,m, σ(0),Θ), of the promising region σ(0);

while ε � d(k) do

Partitioning

Partition the current promising region σ(k) into {σj(k)}
Mσ(k)

j=1 subregion;
Aggregate the current surrounding region σMσ(k)+1

(k) = Θ \ σ(k), and denote it as S(σ(k));

Random Sampling

Execute the Sampling Procedure for taking Nj(k) random points from each jth subregion {σj(k)}
Mσ(k)

j=1 ,

namely: for each jth subregion, get the set of sampled points {θj,s}
Nj (k)

s=1 ;
Execute the Sampling Procedure for also taking Nσ(k)+1(k) random points from surrounding region

σMσ(k)+1
(k), that is, for getting {θMσ(k)+1 ,s}

NMσ(k)+1
(k)

s=1 ;

Measuring

Calculate the performance of each got sampled points using the objective function f(θ), namely: f(θ)|
θj,s

for
jth subregion at each sth random sampling, and also the sampled points from the surrounding region
σMσ(k)+1

(k);

Estimating

Estimate the promising region, that is, finding the index of the best performance, namely, first estimate

Î(σj(k)) = min
s∈{1,...,Nj}

f(θj,s),

and then ĵk = min
j∈{1,...,Mσ(k)+1}

Î(σj(k)).

In the case that two or more regions are equally promising, the tie can be randomized broken.

Decision

if ĵk ≤Mσ(k) then

Let σ(k + 1) = σĵk
(k);

Update by using d(k + 1) = D(k + 1, n,m, σ(k + 1),Θ);
Let k ← k + 1;

else

Backtrack to the entire feasible region Θ;
Let k ← 0;
Let σ(k) = Θ;
Update by using d(0) = D(0, n,m, σ(k),Θ);

Figure 8. The MINP method
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iv. THE PSEUDOCODE OF THE MINP

METHOD

Taking into account the theoretical main results above, it
has been proposed the MINP method, which is shown in
Figure 8 using an easy description of its source code.
The figure shows: the preamble of the algorithm, in
which given: i) the problem; ii) a chosen expected depth
vector; and iii) a declared vector d(k), the MINP method
executes iterative loops for solving Problem 1, whilst the
stopping rule has not been met.

v. ON THE MINP METHOD

In this section we study the main properties of the MINP
method from a stochastic viewpoint. According to the
MINP method, it is reasonable to figure up that the MINP
method generates a Markov stochastic process on a
countable and infinite discrete stochastic state space,
i.e., a Markov chain that can be described by a set
of {D(κ)}∞

κ=0, where κ ∈ N here depicts a cumulative
iteration counter of the MINP method, what means in a
nonmathematical language: the future only depends on

today, and not what have occurred in past time

We shall therefore turn up our attention to the Markov
chain state space that is generated by the MINP method,
when it is run for globally solving any mixed integer prob-
lem given by Problem 1. However, before introducing our
main results on the Markov chain that is generated by the
MINP method (MINPMC), we must point out that each
state of the MINPMC space will be measured by a depth
vector of the kth baggy hull of the current promising
region σ(k), which will be called baggy hull depth vector,
and we shall then be defined it as follows.

Definition 7 (Baggy hull of a promising region) Let

σ(k) be a kth nonempty promising region given by

σ(k) = {z ∈ R
n ×Z

m : lσ(k) � z � uσ(k)}, (13)

with mixed integer depth vector d(k) = uσ(k) − lσ(k). It

says to be a baggy hull of σ(k), denoted by σ̃(k), is the

smallest oversized hull σ(k) such that σ̃(k) ⊇ σ(k).

Basing on this last definition, we thus have the following
result.

Proposition 4 Let d̃(k) be the kth baggy hull depth

vector of the current promising region σ(k), which is

given by

d̃(k) =

(

u(1) − l(1)

2k
, . . . ,

u(n) − l(n)

2k
;

⌈

ū(n+1) − l̄(n+1)

2k

⌉

, . . . ,

⌈

ū(n+m) − l̄(n+m)

2k

⌉)t

(14)

Then d̃(k) depicts the measurements of the smallest

baggy hull in R
n ×Z

m and thus d̃(k) � d(k) for each

k ∈ N.

Proof. For proving this statement, we first pay attention
to the real components, and later to the integer compo-
nents of the promising region σ(k).
Because of Proposition 1, each jth real component of
the current promising region σ(k) has successively been
divided by 2, yielding as a result consecutive partitions
into two subsets per each kth iteration, we therefore
have by (5a) and (5b) that

δ
(j)
σ(k) − l

(j)
σ(k) ≤

u(j) − l(j)

2k
; (15a)

u
(j)
σ(k) − δ

(j)
σ(k) ≤

u(j) − l(j)

2k
, (15b)

where δ
(j)
σ(k) = (l

(j)
σ(k) + u

(j)
σ(k))/2.

Secondly, due to Proposition 2, each jth integer compo-
nent of the current promising region σ(k) has succes-
sively been partitioned into a pair of subsets, consecu-
tively generating two subsets not necessarily the same
size per each kth iteration, hence, by (6) we know that

if δ
(j)
σ(k) = (l̄

(j)
σ(k) + ū

(j)
σ(k))/2 is an integer number, i.e.,

⌊δ
(j)
σ(k)⌋ = ⌈δ

(j)
σ(k)⌉, then

δ
(j)
σ(k) − l̄

(j)
σ(k) ≤

⌈

ū(j) − l̄(j)

2k

⌉

; (16a)

ū
(j)
σ(k) − δ

(j)
σ(k) − 1 ≤

⌈

ū(j) − l̄(j)

2k

⌉

. (16b)

Whereas, if δ
(j)
σ(k) is a non integer number, i.e., ⌊δ

(j)
σ(k)⌋ 6=

⌈δ
(j)
σ(k)⌉, then

⌊δ
(j)
σ(k)⌋ − l̄

(j)
σ(k) ≤

⌈

ū(j) − l̄(j)

2k

⌉

; (17a)
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ū
(j)
σ(k) − ⌈δ

(j)
σ(k)⌉ ≤

⌈

ū(j) − l̄(j)

2k

⌉

. (17b)

Note that the measurements of any kth promising region
σ(k) are given by all the components of d(k), and sim-
ilarly denoting σ̃(k) as the baggy hull of the correspon-
dent promising region σ(k), and whose measurements
are given by all the components of d̃(k) ∈ N, we can
hence say that σ(k) ⊆ σ̃(k).

We are now interested in describing the Markov chain
that is generated by the MINP method, we can hence
say that due to Proposition 4, the Markov chain from
the MINP method (MINPMC) can rigorously be ex-
plained using (14), yielding either, under Condition 1
an unlimited countable set of discrete stochastic states
{D(κ) = d̃(k)}∞

k=0 for all k ∈ N; or under Condition
2 a limited countable set of discrete stochastic states
{D(κ) = d̃(k)}k̂

k=0, where k̂ is given by (9).

Observe the difference that has been made between
the counters k and κ of the algorithm. The first one
means the number of iterations that are executed by
the algorithm from initial state D(κ) = d̃(0); whilst the
second one depicts the number of cumulative iterations
that has been carried out by the MINP method from its
starting.

Let

p(k,ℓ)
κ = Pr{D(κ+ 1) = d̃(ℓ) | D(κ) = d̃(k)} (18)

denote the single-step transition probability that the
MINPMC will visit state D(κ + 1) = d̃(ℓ) at the cumu-
lative iteration κ + 1, if the MINPMC is at state D(κ) =
d̃(k) at the κth cumulative iteration counter, for all k,κ ∈
N and ℓ ∈ {0,k + 1}. Nevertheless, it is reasonable
to assume that (18) dependents on k, whereby the
MINPMC is said to be an nonhomogeneous Markov
chain, what will hereafter be denoted by

p
(k,ℓ)
k =Pr{D(k + 1) = d̃(ℓ) | D(k) = d̃(k)},

∀ k,κ ∈ N, ℓ ∈ {0,k + 1}.
(19)

Figure 9 illustrates the MINPMC, wherein each state is
symbolized by denoted rounded node d̃(k), and each

transition probability p
(k,ℓ)
k by directed arcs, which rep-

resent the probability that the MINPMC changing from
d̃(k) state to either d̃(ℓ) state for each ℓ ∈ {0,k + 1}, at
kth iteration counter.

d̃(0) d̃(1) d̃(2) · · ·

. . .

d̃(k−1) d̃(k)

p
(1,0)
1

p
(2,0)
2

p
(k−1,0)
k−1

p
(k,0)
k

p
(k,k+1)
k

. . .

p
(0,1)
0 p

(1,2)
1 p

(2,3)
2

p
(k−2,k−1)
k−2 p

(k−1,k)
k−1

Figure 9. The MINP Markov chain

Condition 2 Suppose that the MINP method has suc-

cessfully been run for globally solving Problem 1 apply-

ing proposed the algorithm in Figure 8.

Condition 3 Assume that the MINP method uniformly

takes random samplings by randomized located trial

points from both each subregion and the current sur-

rounding region, using both independent and identically

distributed (i.d.d.) continuous uniform random variables

and i.d.d. discrete uniform random variables.

We shall now introduce a measurement of mixed integer
mixed region size, which will allows us to estimate the
probability of the MINPMC events.

Definition 8 (Hypervolume of a region) Let V [σ(k)]
denote the hypervolume of σ(k), which is defined by

V [σ(k)] =
n∏

ℓ=1

(

u
(ℓ)
σ(k) − l

(ℓ)
σ(k)

)

+
m∏

ℓ=1

(

ū
(ℓ)
σ(k) − l̄

(ℓ)
σ(k)

)

,

∀k ∈ N.
(20)

Note that Definition 8 can also be used for calculating the
baggy hull hypervolume of any promising region, which
is

V [σ̃(k)] =
n∏

ℓ=1

(

u(ℓ) − l(ℓ)

2k

)

+
m∏

ℓ=1

⌈

ū(ℓ) − l̄(ℓ)

2k

⌉

,

∀k ∈ N.

(21)

Based on (21), we shall now consider the following
proposition.
We now consider as a successful event F , which has
occurred as a consequence of that the MINP method
has discovered the existence of the best value of the
objective function comes from any subregion, among
all sampled trial points at a kth iteration, i.e., at a d̃(k)
state, and by contrast, let B denote the event that a
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backtracking operation is carried out by the algorithm
as a result that the MINP method identified the best
function value comes from the kth surrounding region
at the same kth counter iteration, therefore, a geometric
distribution is taken place in the estimation of the proba-
bility distribution of the MINPMC states.

Proposition 5 Assume, without loss of generality

(w.l.o.g.), Condition 1 and 3 are met, and let Ni = ν(> 0)

for all i ∈ {ℓ}Mσ

ℓ=1 be the number of random samplings

that are taken from each ith subregion σi(k) at the

κth iteration, and let N(> 0) be the number of random

trial points that are taken from the surrounding region

S(σ(k)). Then

p
(k,k+1)
k =

{

1, if k = 0;

ϕ Mσ γk (1 − γk)Mσ−1, if k ∈ N+,

(22)
where:

ϕ =
Mσν

Mσν + N
; (23a)

γk =

n∏

ℓ=1

(
u(ℓ)−l(ℓ)

2k+1

)

+
m∏

ℓ=1

⌈
ū(ℓ)−l̄(ℓ)

2k+1

⌉

n∏

ℓ=1

(
u(ℓ)−l(ℓ)

2k

)

+
m∏

ℓ=1

⌈
ū(ℓ)−l̄(ℓ)

2k

⌉ , ∀ k ∈ N+.

(23b)

Proof. Let F denote the event that the MINP method
has identified that the best value of f(z) has come from
the current subregion σ(k), let Σi denote the event that
the best value of f(z) has come from any ith subregion
σi(k) at the kth iteration, then,

p
(k,k+1)
k = Pr{Σi,F}, ∀k ∈ N+. (24)

Using conditional probability, we have

p
(k,k+1)
k = Pr{Σi | F}Pr{F}, ∀k ∈ N+. (25)

Under Condition 3, we can say that letting Pr{F} = ϕ

ϕ =
Mσν

Mσν + N
. (26)

On the other hand, due to Conditions 2 and 3, and
Sampling procedure in Figures 20 and 21, and since
sampling trial points are taken from uniform random dis-
tributions for each subregion and the current surrounding
region S(σ(k)), we can then say that (22) is easily

got from a binomial distribution with Mσ subregions,
because a set {σi(k)}Mσ

i=1 is generated by Partition pro-
cedure in Figure 18 at each kth iteration, and parameter
γk expressed by

γk =
V [σ̃i(k)]

V [σ̃(k)]
=

n∏

ℓ=1

(
u(ℓ)−l(ℓ)

2k+1

)

+
m∏

ℓ=1

⌈
ū(ℓ)−l̄(ℓ)

2k+1

⌉

n∏

ℓ=1

(
u(ℓ)−l(ℓ)

2k

)

+
m∏

ℓ=1

⌈
ū(ℓ)−l̄(ℓ)

2k

⌉ , (27)

for all k ∈ N+, because V [σ̃1(k)] =, · · · ,= V [ ˜σMσ
(k)],

and hence γk = V [σ̃i(k)]/V [σ̃(k)] for any i ∈
{1, . . . ,Mσ}, what yields

Pr{Σi | F} =

(

Mσ

1

)

γk(1−γk)Mσ−1, ∀k ∈N+. (28)

By substituting (26) and (28) in (25), we obtain

p
(k,k+1)
k = ϕMσγk (1 − γk)Mσ−1, ∀k ∈ N+. (29)

Besides, the event that the MINPMC visits the {D = 1}
state after it has been at the {D = 0} state always oc-
curs, leaving no doubt, because S(σ(0)) = ∅, whereby

p
(0,1)
0 = 1.

Therefore, we shall hereafter denote, without causing a
loss of its meaning, Pr{D(k) = d̃(k)} as Pr{D(k) =
k} = π(k).
We shall now pay especial attention to the probability
distribution estimating of the MINPMC states, which
may be expressed by a (k̂+1) dimensional vector π =

(π(0), . . . ,π(k̂))t, which depicts

π(k) =
k̂∑

ℓ=0

π(ℓ) δ[k − ℓ], ∀k ∈ Z, (30)

where δ[k] : Z → {0,1} is here called discrete impulse
function, which is a special case of a 2-dimensional
Kronecker delta function δij , and a generalized ℓ-shifted
mathematical expression of δ[k − ℓ] is given by

δ[k − ℓ] =

{
1, if k = ℓ;
0, another case of k ∈ Z. (31)

Note that we have used in (30) π( ·) for denoting the
probability distribution function, and this is not to be
confused with the superscript argument notation π(·)

conventionally used for denoting the component of a
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vector, in this case, π vector.

Proposition 6 Suppose that Conditions 2 and 3 hold,

and let π(0) = Pr{D(0) = 0} be the probability that the

MINPMC visits the state D(0) = d̃(0), which of course

always occurs by the starting of the MINP method; or by

backtracking operations, which can be eventually carried

out by the algorithm. Then

π(ℓ) =







π(0), if ℓ ∈ {0,1};

π(0)∏ℓ−1
j=1 p

(j,j+1)
j , if ℓ ∈ {2, . . . , k̂},

(32)

where:

π(0) =
1

2 +
k̂∑

ℓ=2

ℓ−1∏

j=1
p

(j,j+1)
j

; (33)

and p
(j,j+1)
j is given by (22).

Proof. By induction, we have

π(ℓ) = π(0)
ℓ−1∏

j=0

p
(j,j+1)
j ,∀ℓ ∈ N+. (34)

We besides know,

k̂∑

ℓ=0

π(ℓ) = 1. (35)

Substituting (34) in (35), and knowing that p
(0,1)
0 = 1

because of (22), we therefore deduce

2π(0) +
k̂∑

ℓ=2

π(0)
ℓ−1∏

j=1

p
(j,j+1)
j = 1. (36)

Solving (36) for π(0), we effortlessly obtain

π(0) =
1

2 +
k̂∑

ℓ=2

ℓ−1∏

j=1
p

(j,j+1)
j

. (37)

Knowing that p
(j,j+1)
j is estimated by Proposition 5, and

using both (34) and (37) the proof is completed.
For almost ending this analysis, we apply the above
results and (30) together for getting our mathematical
expression of the probability distribution function of the
MINPMC states, yielding

π(k) =
1∑

ℓ=0

π(0) δ[k − ℓ] +
k̂∑

ℓ=2

π(0)
ℓ−1∏

j=1

p
(j,j+1)
j δ[k − ℓ],

∀k ∈ Z.
(38)

The results heretofore obtained allow us to describe
the behavior of the MINP method, which is a nonho-
mogeneous Markov chain with a conditional geometric
distribution of states given by (38).
Finally, we shall make the follows statements for justi-
fying our approach: By Proposition 4 and taking into
account that σ(k) ⊆ σ̃(k), we can assert that for each
k ∈ N, V [σ̃(k)] ≥ V [σ(k)], and besides, by (21) we
have that V [σ̃(k)] ≥ V [σ̃(k +1)], what would allow us to
say as a reasonable conjecture, that the MINP method
concentrates its finding better promising regions during
the progress of its iterative process, due to the fact of the
continuous process of reduction of the baggy hull of the
identified promising region.

vi. OPERATING THE MINP METHOD

In this section, we shall show a main software that
will operate the MINP method for taking the collec-
tion of the performance measurements: η(ℓ)(p,n,m);
λ(ℓ)(p,n,m); and q(ℓ)(p,n,m) from each ℓth indepen-
dent replication of the MINP method is depicted in Figure
10.
As is shown in Figure 10 on page 129, the MINP method
is called for being r-times executed with different random
seed each, thus achieving r independent runs for taking
i.d.d. unknown function empirical distribution of the
performance measurements, when it is used for globally
solving Problem 1.
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Main software of the Mixed Integer Nested Partitions

Given:
a pth bound constrained mixed integer nonlinear problem Pp

minimize
z∈Rn×Zm

f(z),

subject to l � z � u,

where l, u ∈ R
n × Z

m;

the global minimum or considered true point ẑp of the bounded constrained mixed integer nonlinear problem Pp;

a maximum number of replication, r;

a set of S random generator, namely, Ω = {u(s)}
I(S)
s=I(1), which depends on the sth random seed I(s);

the MINP(s, p, n,m) algorithmic method;

Declare:

a counter replication, ℓ ∈ {1, . . . , r};
an ℓth žℓ ∈ R

n × Z
m point, which will be used for saving the best identified point by the ℓth running of the

MINP(s, p, n,m) method;

an ℓth performance measure sample q(ℓ)(p, n,m) for the (n+m) multidimensional pth problem, which is given by

q(ℓ)(p, n,m) =
1

1 + η(ℓ)(p, n,m) · λ(ℓ)(p, n,m)
, ∀ℓ ∈ N+,

where: η(ℓ)(p, n,m) ∈ N is the number of times that has been evaluated the objective function during the ℓth running

of the MINP(s, p, n,m) method; and λ(ℓ)(p, n,m) = ||ẑ − ž|| ∈ R is the distance or norm between the true point or

global optimum point ẑ and the best point ž identified by the MINP(s, p, n,m);

for ℓ← 1 to r do

Choose a not used sth random seed for getting an i.i.d. random number generator for each ℓ replication;

Run the MINP(s, p, n,m) method for solving the (n+m) multidimensional pth problem;

Compute the ℓth q(ℓ)(p, n,m);
Save:

the ℓth of η(ℓ)(p, n,m), λ(ℓ)(p, n,m) and q(ℓ)(p, n,m);

Estimate:

minimum, mode, mean, maximum, range, and deviation of N(p, n,m), using the set of sampled {η(ℓ)(p, n,m)}rℓ=1;

minimum, mode, mean, maximum, range, and deviation of L(p, n,m), using the set of sampled {λ(ℓ)(p, n,m)}rℓ=1;

minimum, mode, mean, maximum, range, and deviation of Q(p, n,m), using the set of sampled {q(ℓ)(p, n,m)}rℓ=1;

Figure 10. Main software of the MINP for taking sampling

vii. NUMERICAL EXPERIMENTS

In this section, we shall summarize from a set of three
numerical examples, which are described in Appendix
A. The performance of the MINP method, and whose
analysis will then be discussed latter for illustrating the
eventual usefulness of the MINP method.
One of main noteworthy features of each one of following
problems is the existence of 2n+m local minima within
its correspondent feasible region, and only one of them
is a global minimum, whereby could result a challenge,
because these problems are relatively difficult to identify
their respective global minimum.
The experiments were conducted for: a number of

random trial points per subregion Nσj(k) = 6; number of
random trial points per surrounding region NσM+1(k) =
96; and an expected maximum depth vector ε =
(ǫ, . . . , ǫ; ǭ, . . . , ǭ)t, where ǫ = 0.1 and ǭ = 0.

a. GOLDSTEIN-PRICE PROBLEM

In this first example, we have taken into account an
extension of Goldstein-Price function to the mixed inte-
ger Euclidean field R

2 ×Z
2, which has explicitly been

defined in Appendix A. For this numerical experiment,
we run r = 100 independent replications of the MINP
method, using the software of Figure 10.
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Table I. Summary of the MINP method, in which just 1
sample reached 53 cumulative iterations

f(z) N(1,2,2) L(1,2,2) Q(1,2,2)

Mean 108.65 2566.08 6.103 1.03e-2
SSD 107.49 1597.31 6.744 3.81e-2

Min 6.00 1056 0.001 9.29e-6
Q1 27.45 1056 1.058 4.44e-5
Q2 91.17 2064 3.185 1.26e-4
Q3 166.06 3528 9.107 5.34e-4
Max 696.09 8736 24.41 2.67e-1

As is shown in Table I, in a few replications the MINP
method achieved to identify the global solution of the
problem. In fact, according to the reported summary
from the table, the 25 % of the replications reach to iden-
tify solutions to a distance less than 1.058. Moreover, as
can be seen in Figure 11, the algorithm globally solved
the problem as much as 16 % of the samplings. Besides,
from Table I it may be concluded that the MINP method
required, in average 2566 objective function evaluations
for solving the problem, what could be considered as
a good enough algorithmic method. Nevertheless, its
quality performance measurement resulted to be very
low, yielding a maximum value equal to 2.67 × 10−1.
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Figure 11. Empirical CDF of distance to the true
point (DTP) for the Goldstein-Price problem.

As shown in Figure 11, it is depicted the empirical
cumulative distribution function (CDF) of the random

variable distance to the true point (DTP) or global
solution point as a function of d. As can be seen from
the figure, approximately a 25 % of the replications of the
MINP method yielded good enough results, i.e., results
less than 1.
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Figure 12. Empirical CDF of number of function
evaluations (NE) for the Goldstein-Price problem.

Apart from that, Figure 12 shows the empirical CDF of
the number of function evaluation (NE) random variable
for the Goldstein-Price problem, which allows us to see
the performance of the algorithm from the viewpoint of
the NE.

b. W PROBLEM

Our second problem is a minimization problem of a ob-
jective function, which has been proposed by the author
as a challenge in the mixed integer programming, and
whose mathematical expression is given in Appendix A.
Table II presents our main performance measurements
for the W problem, namely: N(2,2,2), L(2,2,2) and
Q(2,2,2). As is shown in the table, the MINP method
spent in average 5512.32 function evaluations for stop-
ping the iterative process, and the 25 % of replications
achieved solutions to a distance to global minimum less
than 20.84, in fact Figure 14 illustrates the value range
of the NE. The table also shows the low values of quality
performance Q(2,2,2), that has been reached by the
algorithm during the computational experimentation for
this problem.
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Table II. Summary of the MINP, in which just 1 sample
reached 163 cumulative iterations

f(z) N(2,2,2) L(2,2,2) Q(2,2,2)

Mean -95.30 5512.32 25.18 1.69e-5
SSD 524.23 4191.62 9.22 2.99e-5

Min -453.59 2016 1.45 1.25e-6
Q1 -306.94 2808 20.84 5.49e-6
Q2 -215.29 4272 25.05 9.25e-6
Q3 -108.82 6672 32.23 1.45e-5
Max 4265.34 28032 44.54 1.99e-4

From Figure 13 it may be inferred that less than 10 % of
the reported replications identified solutions to a distance
to the true point less than 10.
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Figure 13. Empirical CDF of the DTP for the W
function problem

Figure 14 shows cumulative distribution function of the
NE when the MINP method is used for globally solving
the W function problem. Note that the MINP at least
required, in this case, about 28,000 objective function
evaluations.
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Figure 14. Empirical CDF of the NE for the W
function problem

c. ICEBERG PROBLEM

The third problem of optimization is based on an unpub-
lished objective function, whose mathematical expres-
sion is given in Appendix A.

Table III. Summary of the MINP, in which just 1 sample
reached 101 cumulative iterations

f(z) N(3,2,2) L(3,2,2) Q(3,2,2)

Mean -2649.00 4441.92 7.448 2.41e-4
SSD 583.91 3256.11 2.987 7.41e-4

Min -3773.35 1440 0.005 6.07e-6
Q1 -3041.65 1920 6.135 2.32e-5
Q2 -2598.08 3504 8.368 4.07e-5
Q3 -2188.85 5736 9.472 7.99e-5
Max -1326.02 16608 13.03 5.02e-3

Table III shows a statistical summary of the random
variables: N(3,2,2), L(3,2,2) and Q(3,2,2). As can
be seen from the table, the MINP method reported
good enough solutions, because the 25 % of replications
identified solutions to the true point less than 6.135, and
that can be verified from Figure 15, which illustrates the
empirical CDF of the DTP for our problem.
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Figure 15. Empirical CDF of the DTP for the Iceberg
problem

Figure 15 shows the empirical CDF of the DTP for
the Iceberg problem. As can be seen from the figure,
the MINP required less than 5000 objective function
evaluations in the 70 % of replications for identifying at
least a solution, which can be either a local or global
solution.
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Figure 16. Empirical CDF of the NE for the Iceberg
problem

Finally, Figure 16 allows us to infer the cost in function
evaluations of the objective function, because as can be
seen from the figure, the MINP method needed a high

number of function evaluations for globally solving the
Iceberg problem.
It is worthwhile pointing out that the MINP method was
tested without having been tuned for this group of prob-
lems. However, some setting of its parameters were
empirically fitted for improvement the performance of the
algorithm, before running the numerical experiments.

viii. DISCUSSION AND FUTURE RESEARCH

The aim of this article has been to propose a new
approach for globally solving bound constrained mixed
integer nonlinear problems using, for reaching this tar-
get, the principles of the NP method viewpoint, namely:
i) partitioning into subregions of the current promising
region; ii) sampling scheme for obtaining random trial
points from both each subregions and surrounding re-
gion to the current promising region; iii) locating of where
has came from the best sampled trial point among all
sampled trial points; and iv) testing of a stopping rule
for making decision either executing a new iteration or
finishing the iterative process of solving of the minimiza-
tion problem. Nevertheless, heretofore this approach
does not seem to have been effective enough, despite
the theoretical foundations that have been developed
in this research to reach our goal, if it is taken into
account the results reported by Brea [25], who carried
out a comparative study among two implementations of
Genetic Algorithms and the Game of Patterns in the
n-dimensional real field.
Although, the MINP method has shown to be a powerful
viewpoint for identifying promising regions, what would
become a useful algorithmic procedure, and it could
hence be hybridized with some local search algorithm,
e.g., randomized pattern search algorithm [10]; pattern
search algorithm [26], because, the MINP method has
experimentally shown to be effective enough for identi-
fying promising regions, and hence with information of
the promising region could be globally solved Problem 1.
Besides, the approach that has been used in the MINP
method could be easily parallelizable for encoding it in
a parallel computer, what would be effective enough for
finding global solutions to very large dimension mixed
integer optimization problems.
This research has also raised several issues during the
development of the MINP method. Among them, one
can remark: i) the MINP method parameter tuning for
improving it, for this target, one could hence use the
viewpoint of Adenso-Díaz and Laguna [27]; ii) statisti-
cal analysis for the quality performance measurement
applying non-standard parametric statistic, e.g., Cheng
approach [23]; iii) the optimum quantity of random trial
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points from both each subregion and surrounding region
as a function of the depth measurement, what could
be solved by the approach of sampling budget, pro-
posed by Chen and coworkers [28], and including others
approaches for improving the MINP method stopping
rule using, e.g., Berkhout viewpoint [29], who, applying
the results of Chen, et al., [28], presents a new and
interesting approach for accelerating the NP method
stopping rule.

On the other hand, we believe that the incorporation of
criteria based on artificial intelligence (AI) for making
decisions on sampling quantity for taking from each
subregion and its surrounding region, it could be a large
advance in the mixed integer programming.

Finally, as a future work we also propose a compar-
ative study between the MINP method and the Game
of Patterns algorithmic method, when they are applied
for globally solving bound constrained mixed integer
optimization problems.

A LIST OF PROBLEMS

We here present the objective functions of the test
problems used in our numerical experiments taking into
account the formulation of Problem 1. Besides, both
lower and upper bound vectors have also been specified,
and their respective global solutions.

a. EXTENDED GOLDSTEIN-PRICE PROBLEM

OBJECTIVE FUNCTION. Let f(z) : R2n ×Z
2m → R be

the Extended Goldstein-Price function, so called by the
author, which is given by f(z) = f(x) + f(y), where

f(x) =

2n−1∑

i=0

(

1 + (x(2i+1) + x
(2i+2) + 1)2 · (19 − 14x

(2i+1)

+3x
(2i+1)2

− 14x
(2i+2) + 6x

(2i+1)
x

(2i+2) + 3x
(2i+2)2

)
)

·
(

30 + (2x
(2i+1) − 3x

(2i+2))2
(

18 − 32x
(2i+1) + 12x

(2i+1)2

+48x
(2i+2) − 36x

(2i+1)
x

(2i+2) + 27x
(2i+2)2

))

,

(39a)

and

f(y) =

2m−1∑

i=0

(

1 +

(
y(2i+1)

10
+

y(2i+2)

10
+ 1

)2

·

(

19 − 14
y(2i+1)

10

+3

(
y(2i+1)

10

)2

− 14
y(2i+2)

10
+ 6

y(2i+1)

10

y(2i+2)

10

+3

(
y(2i+2)

10

)2
))

·

(

30 +

(

2
y(2i+1)

10
− 3

y(2i+2)

10

)2

·

(

18 − 32
y(2i+1)

10
+ 12

(
y(2i+1)

10

)2

+ 48
y(2i+2)

10

−36
y(2i+1)

10

y(2i+2)

10
+ 27

(
y(2i+2)

10

)2
))

.

(39b)

BOUND CONSTRAINTS. Let l,u ∈ R
2n ×Z

2m be the
bound constraints given by

l = (−2.5, . . . ,−2.5;−25, . . . ,−25)t; (40a)

u = (2.0, . . . ,2.0;20, . . . ,20)t. (40b)

OPTIMUM SOLUTION. The unique global minimum is
located at

zt = (0,−1, . . . ,0,−1
︸ ︷︷ ︸

2n

;0,−10, . . . ,0,−10
︸ ︷︷ ︸

2m

), (41)

and
f(ẑ) = 3(n+ m) (42)

b. W PROBLEM

OBJECTIVE FUNCTION. Let f(z) : Rn ×Z
m → R be the

W function, so called by the author, which is given by

f(z)

n∑

i=1

(
x(i)

4

)4

−
(

x
(i) − 2

)2

+

m∑

i=1

(
y(i)

4

)4

−
(

y
(i) − 2

)2

(43)

BOUND CONSTRAINTS. Let l,u ∈ R
n ×Z

m be the bound
constraints given by

l = (−100, . . . ,−100)t; (44a)

u = (100, . . . ,100)t. (44b)
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SOLUTION. The unique global minimum is located at
ẑ = (x̂t; ŷt)t, where

x̂t = (−12.2054969669241, . . .,−12.2054969669241
︸ ︷︷ ︸

n

);

(45a)

ŷt = (−12, . . . ,−12
︸ ︷︷ ︸

m

), (45b)

and
f(ẑ) = −115.1035690056n− 115m. (46)

c. ICEBERG PROBLEM

OBJECTIVE FUNCTION. Let f(z) : Rn ×Z
m → R be the

Iceberg function, so called by the author, which is given
by

f(z) =
n∑

i=1

(

x(i)4

− α sin(x(i))
)

+
m∑

i=1

(

y(i)4

− β sin(y(i))
)

,

(47)
where α = β = 1000.
BOUND CONSTRAINTS. Let l,u ∈ R

n×Z
m be the bound

constraints given by

l = (−10, . . . ,−10)t; (48a)

u = (10, . . . ,10)t. (48b)

SOLUTION. The unique global minimum is located at
ẑt = (1.55573432449541; . . .;1.55573432449541

︸ ︷︷ ︸

n

;2, . . . ,2
︸ ︷︷ ︸

m

),

and f(ẑ) = −994.028673136238n− 893.297426825682m.

B PSEUDOCODE OF PROCEDURES

Procedure Surrounding(n,m,Θ, σ)

Given:

The number of real components, n;
The number of integer components, m;
The bounded feasible region Θ, namely:

l(ℓ) ≤ x(ℓ) ≤ u(ℓ), ∀ℓ ∈ {1, . . . , n},

l̄(ℓ) ≤ y(ℓ) ≤ ū(ℓ), ∀ℓ ∈ {1, . . . ,m};

A promising region σ ⊆ Θ, defined by

l(ℓ)σ ≤ x(ℓ) ≤ u(ℓ)
σ , ∀ℓ ∈ {1, . . . , n},

l̄(ℓ)σ ≤ y(ℓ) ≤ ū(ℓ)
σ , ∀ℓ ∈ {1, . . . ,m};

Declare:

A matrix X̆ = [x̆(ij)]4,ni=1,j=1 ∈ R
4×nfor saving real boundary components of the set S(σ(k));

A matrix Y̆ = [y̆(ij)]4,mi=1,j=1 ∈ Z
4×mfor saving integer boundary components of the set S(σ(k));

for ℓ← 1 to n do

x̌(1,ℓ) ← l(ℓ);

x̆(2,ℓ) ← l
(ℓ)
σ ;

x̆(3,ℓ) ← u
(ℓ)
σ ;

x̆(4,ℓ) ← u(ℓ);

for ℓ← n+ 1 to n+m do

y̌(1,ℓ−n) ← l̄(ℓ);

y̌(2,ℓ−n) ← l̄
(ℓ)
σ ;

y̆(3,ℓ−n) ← ū
(ℓ)
σ ;

y̆(4,ℓ−n) ← ū(ℓ);

Figure 17. Surrounding procedure
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Procedure. Partitioning(n,m,Θ, σ, d(k))

Given:

the number of real components, n;
the number of integer components, m;
the bounded feasible region Θ, namely:

l(i) ≤ x(i) ≤ u(i), ∀i ∈ {1, . . . , n},

l̄(i) ≤ y(i) ≤ ū(i), ∀i ∈ {1, . . . ,m};

the promising region σ ⊆ Θ to be partitioned, which is defined by

l(i)σ ≤ x(i) ≤ u(i)
σ , ∀i ∈ {1, . . . , n},

l̄(i)σ ≤ y(i) ≤ ū(i)
σ , ∀i ∈ {1, . . . ,m};

the mixed integer depth vector of the current promising region σ(k) to be partitioned
dt(k) = (d(1)(k), . . . , d(n)(k)

︸ ︷︷ ︸

n

; d̄(n+1)(k), . . . , d̄(n+m)(k)
︸ ︷︷ ︸

m

);

Let Mσ = 2n+m be the number of subregions to be denoted by {σj}
Mσ

j=1;

Declare:

a matrix X = [x(ij)]2Mσ ,n
i=1,j=1 ∈ R

2Mσ×n for saving real boundary components of the set {σj}
Mσ

j=1;

a matrix Y = [y(ij)]2Mσ ,m
i=1,j=1 ∈ Z

2Mσ×m for saving integer boundary components of the set {σj}
Mσ

j=1;

Let q = 1 be the counter of subregion σj ;
Initialization

Let i = 1;
for q ← 0 to Mσ − 1 do

(b(n+m−1), b(n+m−2), . . . , b(0))2 ← c(q), where c(q) is a convertor function, which transforms decimal
numbers to binary numbers, namely, (b(n+m−1), b(n+m−2), . . . , b(0))2 ∈ {0, 1}n+m;

for ℓ← 1 to n do

if u
(ℓ)
σ − l

(ℓ)
σ > ε(ℓ) then

δ(ℓ) = (l
(ℓ)
σ + u

(ℓ)
σ )/2;

if b(ℓ−1) = 0 then

x(i,ℓ) ← l
(ℓ)
σ ;

x(i+1,ℓ) ← δ(ℓ);

else

x(i,ℓ) ← δ(ℓ);

x(i+1,ℓ) ← u
(ℓ)
σ ;

for ℓ← n+ 1 to n+m do

if ū
(ℓ)
σ − l̄

(ℓ)
σ > ε̄(ℓ) then

δ(ℓ) = (l̄
(ℓ)
σ + ū

(ℓ)
σ )/2;

if (b(ℓ−1) = 0) ∧ (⌊δ(ℓ)⌋ = ⌈δ(ℓ)⌉) then

y(i,ℓ−n) ← l̄
(ℓ)
σ ;

y(i+1,ℓ−n) ← δ(ℓ);

if (b(ℓ−1) = 1) ∧ (⌊δ(ℓ)⌋ = ⌈δ(ℓ)⌉) then
y(i,ℓ−n) ← δ(ℓ) + 1;

y(i+1,ℓ−n) ← ū
(ℓ)
σ ;

if (b(ℓ−1) = 0) ∧ (⌊δ(ℓ)⌋ 6= ⌈δ(ℓ)⌉) then

y(i,ℓ−n) ← l̄
(ℓ)
σ ;

y(i+1,ℓ−n) ← ⌊δ(ℓ)⌋;

if (b(ℓ−1) = 1) ∧ (⌊δ(ℓ)⌋ 6= ⌈δ(ℓ)⌉) then
y(i,ℓ−n) ← ⌈δ(ℓ)⌉;

y(i+1,ℓ−n) ← ū
(ℓ)
σ ;

Let i← i+ 2

Figure 18. Partitioning procedure
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Preamble of Sampling and the Measuring of the Objective Function

Given:

The number of real components, n;
The number of integer components, m;

Let Mσ ← 2n+m;
Given:

the number of random sample for being taken from each jth subregion σj(k), Nj ;

the number of random sample for being taken from the surrounding region S(σ(k)) = σMσ+1(k), N ;

the real boundaries of each jth subregion σj(k) for each kth iteration, which must be read from the real

matrix X = [x(jℓ)]2Mσ,n
j=1,ℓ=1;

the integer boundaries of each jth subregion σj(k) for each kth iteration, which must be read from the

integer matrix Y = [y(jℓ)]2Mσ ,m
j=1,ℓ=1;

the real boundaries of the surrounding region S(σ(k)) for each kth iteration, which must be read from
the real matrix X̆ = [x̆(ij)]4,ni=1,j=1 ∈ R

4×n;

the integer boundaries of the surrounding region S(σ(k)) for each kth iteration, which must be read
from the integer matrix Y̆ = [y̆(ij)]4,mi=1,j=1 ∈ Z

4×m;
a convertor function c(q), which converts any q ∈ N number, which is given by its decimal
representation, to its binary representation, namely, q = (b(⌈lg2(q)⌉−1), . . . , b(0))2 ∈ {0, 1}⌈lg2(q)⌉;

Declare:

the best current point ẑt = (x̂(1), . . . , x̂(n); ŷ(n+1), . . . , ŷ(n+m)) ∈ R
n × Z

m;
the index of the best performance of the objective function, given by

Î(σj(k)) = min
s∈{1,...,Nj}

f(zs,j),

where zs,j denotes the sth mixed integer sample point, which has been taken from the subregion σj(k);

Choose:

an nth index seed, namely, n ∈ N , which depends on the sth random seed I(s);
an Ns ∈ N+ number of sampling per sector of surrounding region σ(k) at the kth iteration;

if k = 0 then Assign the current objective function value f̂(ẑ), the largest possible value that can be
represented in an x-bit computer;

Figure 19. Preamble of the sampling procedure
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Procedure Sampling of Surrounding and Promising Region and the Measuring of the Objective Function (Part i)

Let î← 0;
if k ≥ 1 then

for ℓ← 0 to 2n − 2 do

for ℓ̄← 0 to 2m − 2 do

(b(n−1), . . . , b(0))2 ← c(ℓ);

(b̄(m−1), . . . , b̄(0))2 ← c(ℓ̄);
for r ← 1 to Ns do

for j ← 1 to n do

if b(j−1) = 0 then

x(j) ← u(x̌(2,j), x̌(3,j), s)
else

x(j) ← w(x̌(1,j), x̌(2,j), x̌(3,j), x̌(4,j), s)

for j ← 1 to m do

if b̄(j−1) = 0 then

y(j) ← ū(y̌(2,j), y̌(3,j), s)
else

y(j) ← w(y̌(1,j), y̌(2,j), y̌(3,j), y̌(4,j), s)

Let zts ← (x(1), . . . , x(n)

︸ ︷︷ ︸

n

; y(n+1), . . . , y(n+m)

︸ ︷︷ ︸

m

)

Measure the objective function by f(z)|zs
if f(zs) < f̂(ẑ) then

Let f̂(ẑ)← f(zs);
Let ẑ ← zs;

Let î←Mσ + 1;

for d← 1 to 2 do

switch d do

case d=1 do

Let ℓ = 2n − 1;
Let ℓ̄ = 2m − 2;

case d=2 do

Let ℓ = 2n − 2;
Let ℓ̄ = 2m − 1;

(b(n−1), . . . , b(0))2 ← c(ℓ);

(b̄(m−1), . . . , b̄(0))2 ← c(ℓ̄);
for r ← 1 to Ns do

for j ← 1 to n do

if b(j−1) = 0 then

x(j) ← u(x̌(2,j), x̌(3,j), s)
else

x(j) ← w(x̌(1,j), x̌(2,j), x̌(3,j), x̌(4,j), s)

for j ← 1 to m do

if b̄(j−1) = 0 then

y(j) ← ū(y̌(2,j), y̌(3,j), s)
else

y(j) ← w(y̌(1,j), y̌(2,j), y̌(3,j), y̌(4,j), s)

Let zts ← (x(1), . . . , x(n)

︸ ︷︷ ︸

n

; y(n+1), . . . , y(n+m)

︸ ︷︷ ︸

m

)

Measure the objective function by f(z)|zs
if f(zs) < f̂(ẑ) then

Let f̂(ẑ)← f(zs);
Let ẑ ← zs;

Let î←Mσ + 1;

Figure 20. Sampling procedure, part i
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Procedure Sampling of Surrounding and Promising Region and the Measuring of the Objective Function (Part ii)

for i← 0 to Mσ − 1 do

for r← 1 to Ns do

for j ← 1 to n do

if d(j) ≤ ε(j) then
x(j) ← x̂(j)

else

x(j) ← u(x(2i+1,j), x(2i+2,j), s)

for j ← 1 to m do

if d̄(j) ≤ ε̄(j) then
y(j) ← ŷ(j)

else

y(j) ← ū(y(2i+1,j), y(2i+2,j), s)

Let zts ← (x(1), . . . , x(n)

︸ ︷︷ ︸

n

; y(n+1), . . . , y(n+m)

︸ ︷︷ ︸

m

)

Measure the objective function by f(z)|zs
if f(zs) < f̂(ẑ) then

Let f̂(ẑ)← f(zs);
Let ẑ ← zs;

Let î← i;

Let i← i + 1;

switch î do

case î = 0 do

Backtrack to entire feasible region Θ;
Update the depth vector d by using d(0) = D(0, n,m, σ(k + 1),Θ);
Let k ← 0;

other wise do

Let σ(k + 1) = σî(k);
Update by using d(k + 1) = D(k + 1, n,m, σ(k + 1),Θ);
Let k ← k + 1;

Figure 21. Sampling procedure, part ii

C PSEUDOCODE OF FUNCTIONS

Function Real Double Uniform(a1, b1, a2, b2, n)

Given:

a1 ∈ R: a lower real bound of the first interval uniform random distribution;
b1 ∈ R: an upper real bound of the first interval uniform random distribution;
a2 ∈ R: a lower real bound of the second interval uniform random distribution;
b2 ∈ R: an upper real bound of the second interval uniform random distribution;
n ∈ N : a nth seed from an available pseudorandom number generator set;
u(n) ∈ (0, 1): a uniformly distributed random number between 0 and 1 from the nth

index seed, namely, {u(s)}
I(S)
s=I(1), which depends on the sth random seed I(s);

Output: a uniformly distributed random real number belonging to two disjunct intervals,

namely: (a1, b1) or (a2, b2) ;
Function w(a1, b1, a2, b2, n):

Calculate θ ∈ R and x ∈ R, namely:

θ =
b1 − a1

b1 + b2 − a1 − a2
;

x = a1 + (b1 + b2 − a1 − a2) u(n);

if θ ≤ u(n) < 1 then

Let x← x+ a2 − b1;

return x;

Figure 22. Double real uniform distribution function
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Function Integer Double Uniform(ā1, b̄1, ā2, b̄2, n)

Given:

ā1 ∈ Z: a lower integer bound of the first interval uniform random distribution;
b̄1 ∈ Z: an upper integer bound of the first interval uniform random distribution;
ā2 ∈ Z: a lower integer bound of the second interval uniform random distribution;
b̄2 ∈ Z: an upper integer bound of the second interval uniform random distribution;
n ∈ N : a nth seed from an available pseudorandom number generator set;
u(n) ∈ (0, 1): a uniformly distributed random number between 0 and 1 from the nth

index seed, namely, {u(s)}
I(S)
s=I(1), which depends on the sth random seed I(s);

Output: a uniformly distributed random integer number belonging to two disjunct intervals,

namely: [ā1, b̄1] or [ā2, b̄2] ;
Function w(ā1, b̄1, ā2, b̄2, n):

Calculate: θ ∈ R and x ∈ R, namely:

θ =
1 + b̄1 − ā1

2 + b̄1 + b̄2 − ā1 − ā2
;

x = ā1 + (2 + b̄1 + b̄2 − ā1 − ā2) u(n);

if θ ≤ u(n) < 1 then

Let x← x+ ā2 − b̄1 − 1;

return ⌊x⌋;

Figure 23. Double integer uniform distribution function

Function depth D(k, n,m, σ(k),Θ)

Given:

The iteration counter, k;
The number of real components, n;
The number of integer components, m;
The kth promising region σ(k) ⊆ Θ, which is then defined by

l(i)σ ≤ x(i) ≤ u(i)
σ , ∀i ∈ {1, . . . , n},

l̄(i)σ ≤ y(i) ≤ ū(i)
σ , ∀i ∈ {1, . . . ,m};

the bounded feasible region Θ, namely:

l(i) ≤ x(i) ≤ u(i), ∀i ∈ {1, . . . , n},

l̄(i) ≤ y(i) ≤ ū(i), ∀i ∈ {1, . . . ,m};

Declare:

d = (d(1), . . . , d(n)
︸ ︷︷ ︸

n

; d̄(n+1), . . . , d̄(n+m)

︸ ︷︷ ︸

m

)t ∈ R
n × Z

m;

Output: an updated depth vector d;
Function D(k, n,m, σ(k),Θ):

switch k do

case k = 0 do

for j ← 1 to n do

d(j) ← u(j) − l(j);

for j ← n+ 1 to n+m do

d̄(j) ← ū(j) − l̄(j);

other wise do

for j ← 1 to n do

d(j) ← u
(j)
σ − l

(j)
σ ;

for j ← n+ 1 to n+m do

d̄(j) ← ū
(j)
σ − l̄

(j)
σ ;

return d

Figure 24. Depth function
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