COMPRESSION OF
SYNTHETIC-VEHICULAR-
TRAFFIC FLOW USING

“COMPLEMENTED BINARY

REPRESENTATION”

m David Sanchez

davidenrique@gmail.com

Escuela de Ing. Informatica
Universidad Catélica Andrés Bello

Caracas - Venezuela

Fecha de Recepcidn: 8 de octubre de 2008

Fecha de Aceptacion: 12 de enero de 2009

Abstract

Vehicle traffic studies use Nagel-Schreckenberg
(NaSch) based simulations that produce significant-
size information files. In order to save that information,
common compression techniques are not enough to
achieve high compression in minimal time. The present
article demonstrates how to compress those synthetic-
vehicular-traffic flows using binary representation (data
modeling) and .zip codification (generic data modeling
with entropy-coding) to get a 12:1 compression ratio.

Resumen

El estudio de trafico vehicular utiliza entre sus mé-
todos de analisis la simulacion sintética basada en
el modelo original de Nagel-Schreckenberg (NaSch).
Dichas simulaciones arrojan archivos de informacion
de gran tamanio que es necesario almacenar. La
aplicacion exclusiva de técnicas comunes de com-
presion no es suficiente para lograr altas tasas de
compresion en minimo tiempo. El presente articulo
aborda la compresion de dichos modelos de flujos
de trafico mediante representacion binaria (medelado
de datos) y codificacion .zip (modelado genérico de
datos y codificacion-entropica) para obtener tasas de
compresion de informacion de 12:1.

1. Introduction

This article describes a compression technique that
allows a more efficient database storage of “Com-

revista de ingeni e.ni_aﬁ‘

David Sanchez

mon Format™ synthetic vehicle traffic simulations. To
accomplish the technique, it was assumed that the
principal cause of the huge “Common Format” file
sizes created by NaSch simulators was information
represented using statistically redundant data; then,
NaSch-obtained information represented using byte
flows without statistically redundant data would be an
optimal compression technigue.

The technigue was created during the development
of an automatic information tool to analyze synthetic
simulations of vehicular traffic[1]. The information tool
was custom made under specific UCAB-CIDI? requi-
rements.

The compression algorithm was created in order
to animate previously computed data (obtained from
NaSch simulators) and achieve frame-by-frame analysis
of traffic conditions.

The information in this article has a limited radio
action to compression of vehicular traffic flow. Never-
theless, the technique can be applied with few modifi-
cations to almost any kind of modeling which involves
particles flow and require some kind of compression
to store data about their behavior.

Particle flow modeling problems are common to
gas investigations, biological epidemics, population
migrations, fluid research, and many in which, it is
possible to create cellular automata that generate re-
presentations similar to “Common Format”. For all of
them, “Complemented Binary Representation” can be
a useful compression technigue.

This paper also includes explanations about how
the information tool works applying the compression
technigue. The tool was an essential instrument for the
experimental demonstration of the capabilities of the
compression algorithm.

This research is not a definitive solution, but rather
a starting point for further investigations.

2. Previous work and motivation

UCAB-CIDI researchers [1] [2] [3] raised a clear
concern about how to automate the processing and
organization of synthetic data of vehicular traffic in

1 There is no standard naming for this representation techni-
que used by researchers.

2 Universidad Catdlica Andrés Bello Engineering and Develo-
pment Research Center {Centro de Investigacidn de Ingenie-
ria de la Universidad Catdlica Andrés Bello)

order to perform the analysis and deductions of its
behavior.

The former procedure to perform those analysis and
deductions consisted in the following:

Some synthetically data were considered by va-
riations of a model parameters. Data was stored in a
text file.

A Cellular Automata (NaSch-model program
written in C) was run using the parameters pre-
viously stored on the text file. This program is
time consuming due to a highly iterative code.
Section 2.1 describes the NaSch-model in
detail.

1. Some output files were obtained from the pre-
vious step. One of them contains processed
data; the others are graphical representations of
the vehicles’ movement. These files are printed
and taped together as a continuous-form paper.
This representation, detailed in section 2.2, is
the principal obstacle to achieving animation
and storing. Fora 1600 meters two-way street,
there are two graphical representation files,
each about 60 single-space-letter-size pages,
if opened in Microsoft Word, with a font size of
12 pt (Windows).

Steps 1, 2 and 3 were repeated checking graphical

representation files.

Generated information was analyzed.

Many simulations are required to obtain a useful
representation of a studied problem, in some cases
1000 or more. Under the described manual process,
a simple 10-simulation problem took a whole week.

Increasing the number of simulations to useful repre-
sentation levels quickly turned into an unmanageable
task. The huge amounts of files made the analysis a
cumbersome process since it was almost impossible
to find a particular simulation section.

To solve the problem, a program was developed
that included the following:

* A MySQL database to store all the informa-
tion.

* A Java graphical interface to allow access to
processed and unprocessed data. This program
also runs the NaSch-based synthetic simulator
and creates animations with the resuits.

thne 12

Compression of Synthetic-Vehicular-Traffic Flow using “Complemented Binary Representation”

Researcher

(User) /’—\
Connection Daty
~

Traffic syntherle duta

S 7]

Create database
connection

Sofutions asked by
researcher

Animatinns

L+ Conngetion data —

\ecess aprasai ehject
connection

Convection
privilozes
Unprocessed Frafhic
Synthetic Data

‘
/ —————
;
/ Synthetic
3 —_—— = /—\ I'rocessed
i Tiaffic Dats
i

Santhetic
Processet
Dara

A

Senthetic Datw Animationy

Animatiens
Data

tinprocessed Traftic
} Santhetic Dty Pracessed ara

Nummary

Processed
N, dwix summary
\

Animations
provessed data

Unprocessed Trafic
Synthetic Duta

NaSch
simulator
itten in

Figure 1. Data Flow Diagram (Level 2). Darkest oval shows compres-
sion module location.

The synthetic traffic simulator (NaSch simulator)
created by UCAB-CIDI researchers, was madified to
be loaded as a C Dynamic Library under a JNI interfa-
ce. Process intercommunications between C (NaSch
simulator) and Java (Graphical interface) were achieved
through files.

A compression module processed the huge text
files generated by the simulator. Figure 1 shows the

time

location of this compression module in the information
tool. The compression module is the central topic in
the present paper.

Because there is no explicit terminology, those text
files generated by NaSch simulators are referred to in
the present article as “Common Format” text files. The
format is described in section 2.2.

2.1. NaSch model

Through cellular automata, researchers create
discrete models of space, time and speed. Space is
discretized in a way each cell of the cellular automata
is occupied by a vehicle only[4]. Time development
follows simple rules using stochastic elements[5].

A simple mode! based on cellular automata which
can reproduce many of the characteristics observed
in the traffic is the Nagel-Schreckenberg (NaSch)
model[B]. In this model, a vehicle state » is charac-
terized by a position x, and speed v€{0,1,2,..v_ }.
The gap between the nth-vehicle and the vehicle in
front of that oneisd =x _ —x . For each time stamp, the
array of vehicles is updated according to the following
rules[6]:

1. Acceleration

= v —> ; X)
If v <y V mln(v v)
n max’ n n+1’ " max

2. Deceleration due to other vehicles

If d <v v —=min(v, d-1)

n

space

Y 5. [EF 3006]] 2 1 §

Figure 2 Traffic jams representation. Left: Empiric data. Right: Computer simulation using NaSchmodel. Numbers O to 5
represent vechicle speed [4]

revista d ejnggn_igtiaﬁ_

David Sanchez

3. Random break
If v >0.v —=max(v, —1.0) with probability p
4. Vehicle moving (Driving)

N =Dy =p

Rule 1 represents the driver’s wish to drive at the
maximum allowed speed. Rule 2 prevents collisions
and vehicles’ entrance to the circulation lane. Rule 3
adds environmental characteristics and incorporates
asymmetric acceleration and deceleration. Rule 4
moves the vehicle with the speed determined in the
previous steps[4].

a

x (10° fi

. i i I3 " It
[#] -

0 20 40 60 B0 100 120 140
i
Figure 3. Traffic Jam representation done by Treiterer and Myers in
1974 based on aerial photography(4].

Using a NaSch model and change lane algorithms,
traffic researchers can generate computer simulations
that match the results acquired through measuring.
Figure 3 shows one of those first representations made
by Treiterer and Myers in 1974 using aerial photogra-
phy [4].

Figure 2 shows a comparison between a model ob-
tained through measuring and a synthetic model[4].

2.2. “Common Format” Text Files and their In-
conveniences

Even though there is no standard representation for
traffic solutions and problems, most researchers have
used technigues similar to Figure 3 to explain vehicular
traffic behavior.

0 201

Figure 4. UCAB-CID! NaSch simulator sample. Numbers O to 5 repre-
sent speed(1].

As Figure 2 shows, representations obtained through
computer simulations use a similar nomenclature. Figu-
re 4 shows the output of one of the UCAB-CIDI NaSch
simulators used to analyze vehicular traffic in Caracas
(Venezuela)[1].

Those “Common Format” files use numbers, usually
from 0 to 5, to indicate vehicle speed and tabulated
positions 10 show vehicle location. Each row represents
a time step.

As a consequence of this static representation, the
reader needs to imagine how vehicles move. Training
is required to assess traffic jams, and the poor format
presentation makes it difficult for researchers to analyze
the phenomenon.

To avoid those limitations, it was decided to make
animations with those models. However, due to simu-
lator operation it is very difficult to generate real time
animation (animate at the same time that simulation is
being generated). That is why it was decided to create
the animation from simulation final results stored in
files.

Wekhnﬂz

Compression of Synthetic-Vehicular-Traffic Flow using "Complemented Binary Representation”

As described earlier, each time the simulator is run,
a figure-4-like file is generated. The file includes dozens
of pages for each one of the lanes that can be found
in a route.

A typical text file for a 5-Km-one-way route® has an
approximate size of 248 KB (each lane). For a two-way
route the researcher gets two 248 KB files, which adds
up to 496 KB.

In order to get a quality analysis of the problem,
it is necessary to consider at least 100 simulations,
each one obtained after variations of the model pa-
rameters.

Analyzing a two-way lane, with those 100 simula-
tions would require a database space of 49,600 KB
(48.44 MB). Because of the finite characteristics of
today’s storage equipment (Databases in personal
computers) is essential some method to compress the
information.

3. Background

In computer science, compression is codified
information using less bits (or any other saving infor-
mation unit) than the original data representation[7].
Compression’s main objective is to minimize the space
required to store data[8]. The main disadvantage of
compression is the need for a time consuming decom-
pression process|[8].

Compression’s theoretical frame is supplied by
“information theory” (highly related to “Algorithm Infor-
mation Theory”). These case studies were essentially
created by Claude Shannon, who published funda-
mental papers on the topic in the late 1940s and early
1950s [7]. Nevertheless, compression’s fundamental
conceptis at least as old as Romans, who realized that
the numeral /' needed less space on a stone tablet
than the [/II] representation[9].

Compression theory establishes differences bet-
ween information and data that might not exist in other
contexts.

information is the communication or acquisition of
knowledge that allows to expand or specify what it is
known about a particular subject?.

3 ltisconsidereda 1, 600 array to store the vehicles. Itis
about 5,600 m, considering 3.5 m average length vehicles)

4 Definition provided by “Diccionario de la Real Academia
Espafiola” (Spanish Royal Academy Dictionary).

In the traffic study context, the term information
would be related to vehicular-flow intrinsic characte-
ristics, which are independent from its representation.
The key word for “information” is meaning.

The term data refers to the way information is repre-
sented. The medium in which information is contained.
The Key word for “data” is representation.

For example, the letter “"A” has a known meaning
relating to the language context. It could be the first
letter of the Roman alphabet, the first open vowel, an
article in English, etc. This is information. Data relating
to the letter is font, color, size, form, etc.

Depending on how information is treated, there are
two main compression techniques. Those based in
“lossless” algorithms, which compress data based on
statistical redundancy and “lossy” algorithms, which
compress data losing fidelity[8].

“Lossless” techniques do not lose information and
tnerefore are preferred to compress critical data. As
a disadvantage, those compression-decompression
technigues reqguire high level resources in time and
computing capacity[9]. Additionally, it is not possible to
compress some kind of data and the iterative applica-
tion of those algorithms does not elevate compression
ratio[9].

“Lossy” compression techniques imply removing
fidelity. They require a deep understanding of the
perceptual limitations and capabilities of receptors
(Mostly human senses) to avoid losing relevant infor-
mation. These techniques are primarily used in video,
photography and music, where quality losses could
be tolerated by spectators[9]. Iterative applications of
lossy algorithms over the same data causes a complete
loss of all data[9].

4. Solution

Compression techniques were analyzed over “Com-
mon Format” text files. It was necessary to compress
the essential information expressed in those files, for
them to have smaller footprint, no clearness sacrifice
and short decompression time.

“Lossy” techniques were discarded as being unac-
ceptable to lose information. Therefore, a “lossless”
technique was applied to the compression problem.

revista de. i ngsmgﬂaﬁ__

David Sanchez

4.1. Data Analysis

There are two main problems with digital data com-
pression while using “lossless™ techniques. These are
modeling and data entropy coding. Any representation
of the real world exists in its digital form as a symbol
(bit) sequence. Data Modeling problem consists in
choosing the correct symbols to represent that infor-
mation and predict occurrence probability of each one
of those symbols. Entropy-coding problem consists in
codifying each one of the symbols in the most possible
compact way [10].

Data modeling is related to the kind of data to be
compressed, while entropy-coding is an abstract pro-
blem that does not depend on the kind of data to be
compressed[10].

While entropy-coding problems are well known,
modeling problems are still unknown for many
applications[10].

4.1.1. “Common Format” Relevant Information

“Common Format” text files most important infor-
mation is vehicle position through time in flow lanes.
Due to space-time discrete assumptions, interspaced
vehicles and their positions are relevant and need to
be preserved to ensure high quality.

4.1.2. “Common Format” irrelevant Information

The “Common Format”, shown in Figure 3, includes
numbers from 0 to 5 to indicate vehicle speed. These
numbers are included to give the reader something he
can use to imagine vehicles movement, and are used
by the NaSch simulator to create the model frames.

Because the main purpose of compressing the
“Common Format” is to make a more explicit and com-
prehensible animation, it is unnecessary to save speed
information. Vehicle movement is going to be shown
using over positioned frames. Section 4.1.1 states that
all frames have to be preserved.

At a glance, it might seem that saving the speed
parameter can provide a smoother animation. However,
the NaSch simulator includes discrete space and time
in its functioning theory. This means, time only exists
in the given frames. An artificially created smoother
animation is not only intensive computationally but it
would include artifacts to the model. Also, among the
NaSch simulator rules there is a random component
(Rule 3) with unknown behavior in-between the discrete
instants.

The only way to make a smoother and more realistic
animation without including information distortion is

adjust the NaSch simulator so it uses smaller discrete
time units.

In conclusion, there is no need to store 0-to-5 ve-
hicle speed.

4.1.3. “Common Format” Irrelevant Data

“Common Format” files are text files. As such, they
include the following irrelevant data:

e Text Headers

Additional information about the operating
system they belong to. This data includes
creation time-stamp, modification time-stamp,
execution permissions, codification format, etc.
All that information would be contained in the
database table that will store the compressed
objects. Additionally, Relational Database
Manager Systems offer transparency over the
operating system they are running, so headers
can be discarded.

e Break lines or carrier returns

Returns characters at the end of each line that
represent a circulation lane. Database includes
a lane length parameter, so this information is
redundant.

* [nteger number representation

Codification conventions for text files are pre-
served according to standards and operating
systems. Some of those standards includes
ISO 8859, EUC, Windows, Mac-Roman... and
even Unicode schemes as UTF-8 or UTF-
16[11].

Most operating systems include a codification
based on ASCII %. Every time a 1 or a 2 is writ-
ten, this number has to be represented through
an 8 bits codification (a byte).

Continuing the explanation with ISO 8859
convention (formally known as ISO/IEC 8859),
to codify a 1, for example, the code refers to
the decimal number 49 (31,), and for a zero,
it refers to number 48(30,).

In1ISO 8859-1, these characters are converted
directly to the binary system[13]:

Character 0 text document representation is
00110000

Character 1 text document representation is
00110001

hin

hin

5 EBCDICand CDC[12] representations are not currently used

mt.e_khne 12

Compression of Synthetic-Vehicular-Traffic Flow using "Complemented Binary Representation”

In “Common Format” context, discarding
speed as relevant information, a “1” represents
a present vehicle and a “0” represents an
absent vehicle. An ideal situation would be to
represent this single information as concisely
as possible.

Just using bits of a byte, an on bit would repre-
sent a present vehicle (1) and an off bit would
represent an absent vehicle (0). Text files are
representing the same information using a byte
per character (*1” or “0”) under a writing file
code.

In other werds, each time there is a present
or an absent vehicle in a cell lane, “Common
Format” Text files are using 8 bits to represent
information that should only require only 1 bit
(Present or absent). There is a high data redun-
dancy.

4.2. Proposed solution

The main idea in solving the problem is to model
traffic flow as an array of integer numbers. Those num-
bers, when read in binary form, would show the same
information about vehicles position over time that is
printed on the “Common Format” text files.

The solution would be developed in two phases;
the first with the modeling technique (Compression
by modeling) and the second, by complementing the
modeling technique with a known modeling plus data
entropy coding algorithm.

¢ Phase 1

1. Build a modeling algorithm that runs as fo-
llows:

a. Thecompression module reads the “Com-
mon Format” file thrown by a NaSch typical
simulator. A sample of these files can be
appreciated in figure 3.

b. Onceinmemory, allcharacters “0”,2",“3","“4”
and “5” are substituted by “1”. All * "(white
spaces) characters are substituted by 0.
Line-breaks chars are deleted.

c. Create a byte array.

d. Divide the string previously obtained, the
one that has “1000000100010...” codifica-
tion, in groups of 7 characters and convert
each one to a byte. Add the byte to the byte
array.

e. Store the byte array into BLOB field in a
database.

This algorithm would be referred to as “Binary
representation” (Java code can be seen in
Appendix B).

2. Verify that results from applying “Binary re-
presentation” generate a compression ratio of
7.

] Phase 2

3. Modify the “Representation binary” algorithm
to complement it with a .zip compression te-
chnique, provided by standard Java libraries.
.Zip compression includes simple modeling
(independent from data) and entropy-coding.
This phase-2 algorithm would be referred to as
“Complemented Binary Representation”.

4. Measure results obtained from applying “Com-
plemented Binary Representation”.

The compression module was placed inside a
Java program that would be used for further
condition and parameter traffic analysis.

Appendix A explains how the host program
works. The compression module is part of that
host program and is contained inside a Java
class.

4.2.1. Important considerations about into-byte
conversion

Bytes are elements used for computer-to-computer
communications and also for storing data as BLOBS
in databases.

The algorithm created basically replaces “0", “2”,
“3”, “4” and “5” into “1” and white spaces into “0”.
Then it takes this character string formed by “1” and
“0” and segments them in groups of 7. Then each of
these 7-elements groups is transformed into a byte. A
question that could be raised about it: If 8 bits form a
byte, and groups are made of 7 bits. Why is there a bit
wasted in each byte formed?

The answer is intrinsically related to the way most
modern computers operate. Bytes are used to repre-
sent positive and negative numbers. To achieve that
representation a “complement by two™ convention is
used, in which, given n bits, the number interval that
can be represented in “complement by two”, goes to
the interval [277, 2*'-1] [14]. For an 8-bit representation,

revista de inuen_i_ejzl’aﬂ__

David Sanchez

Java Virtual Machine allows integer numbers in the
range[-128, 127] [15].

In “complement by two” convention there are 7 bits
to represent the numbers from 0 to 127 and all 7 bits
combinations are valid. 8 bits strings can represent
positive or negative numbers, and thus, not all 8 bits
strings are valid under the convention. For vehicular
traffic representation this means that not all 8 cells (with
mixed vehicles and spaces) have a complement-by-two
representation. Some samples:

* Vehicle sequence “10001000” cannot be re-
presented as a byte because it represents the
number 136 and is out of the byte representa-
tion range (Maximum is 127).

¢ Vehicle sequence “11100000” can be represen-
ted as a byte, because it represents the number
-31 and is inside the range representation (Mi-
nimum is -128).

As can be seen, there would be a significant over-
head on the into-byte conversion algorithm if valid and
not valid sequences have to be considered. Sometimes,
the algorithm could chop 8 cells, and other times, only
7 cells.

Although this approach would increase compres-
sion ratio, it would also increase algorithm complexity,
time-consumption and computing overhead. Using only
7-bit sequences compression-decompression speed
is incremented due to simpler algorithms.

4.2.2. Complemented Binary Representation
Technique

As it was commented on section 4.1 about “Data
Analysis” there are two main problems with digital
data compression using “lossless” techniques. These
are modeling and entropy coding of data. Once the
modeling problem was “acceptably” solved (See sec-
tion 5.1 for experimental results), it raised the need for
developing and entropy-coding algorithm. However,
the following considerations arose:
e Entropy-coding algorithms are well understood
[10].

* Entropy-coding is an abstract problem weakly
related to the type of data being compressed
[10].

¢ TheJava platform has full compression libraries
(generic data modeling + entropy coding). Java
platform includes a java.util.zip which allows
instrumenting zip, gzip and PKZip compression
formats [16].

The package java.util.zip was selected to comple-
ment the “binary representation algorithm”. Advantages
of using the pre-made package are:

* TheZLIB compression algorithm and its variants
(zip,gzip, PKZip...) implemented in the package
are well known by its compression-decompres-
sion speed.

» Compression packages are a main feature in the
Java platform libraries and are well optimized to
run in the Java Virtual machine.

* Possibility to specify the compression strategy
(zip, gzip, PKZip...) and speed/strength com-
pression relation.

The resulting algorithm will be referred to as “Com-
plemented Binary representation” (Java code can be
seen in appendix C).

5. Experimental results

Tests were conducted on a personal computer
(Laptop) with the following hardware-software confi-
guration:

1. Pentium lll processor alike (AMD brand).
256 Mb RAM.

5 Gb hard disk space.

Xubuntu Linux 6.10.

Java SDK 1.5

The nature of the binary representation algorithm
offers a constant compression ratio of 7:1 in all per-
formed tests, using many different file sizes. Standard
deviation was close to 0.

g ok N

Other compression techniques that rely on generic
data modeling and entropy coding (zip, gzip, PKZip,
JAR, .tar.bz2, etc.) have variable compression ratios.
Small variations on the files can produce completely
different compression ratios, since algorithms could
better recognize patterns [9]. As a consequence, com-
pressing a given file is the only way to exactly know how
high the compression ratio would be, and the results
are usually only valid for that file. Nevertheless, most of
alternative compression technigues tests offered avera-
ge similar results for the same kind of data, presumably
because of NaSch model intrinsic characteristics and
the intelligence (entropy coding) of the algorithms. The
best average compression for most of these technigques
is about 6:1[17][19].

L,mmmgz

Compression of Synthetic-Vehicular-Traffic Flow using “Complemented Binary Representation”

As a consequence, and for illustrative purposes,
only one test sample (Phase 1 and 2) was included in
this article.

5.1. Phase 1

After applying the binary representation algorithm
in a “Common format” text file of 252,200 bytes a
ratio compression of 7.0727466:1 (7:1) was obtained.
Database representation was 35.658 bytes size.

The following results were obtained when compres-
sing the same text file using other techniques:

s Zip

Initial file size: 252,200 bytes = 246.3 KB

Final size: 39,658 bytes = 38.7 KB

Compression ratio: 6.3593726:1

e tar.bz?

Initial file size: 252,200 bytes = 246.3 KB

Final size: 32,299 bytes = 31.5 KB.

Compression ratio: 7.8082913:1

e tar.gz

Initial file size: 252,200 bytes = 246.3 KB

Final size: 39,668 bytes = 38.7 KB.

Compression ratio: 6.3577695:1

s ar

initial file size: 252,200 bytes = 246.3 KB

Final size: 39,658 bytes = 38.7 KB.

Compression ratio: 6.3593726 :1

5.2. Phase 2

Binary representation algorithm (Modeling only) re-
turns a 7:1 compression ratio. Once applied, the .zip
algorithm provided by java.util.zip to the 35,6358 bytes
file, produced a database representation of 20,748
bytes (Compression ratio 1.7186235:1).

In sum, starting from the initial file to the final com-
pressed data:

Initial file size: 252,200 bytes = 246.3 KB

Final size: 20,748 bytes = 20.26 KB

Compression ratio: 12.155388:1

5.3. Results Analysis

: L

252,200 0.0000000

Wz 55668 07 63577695

s 39.658 0 63593726

e 39,658 07 63593726

SinaryRepeT 35,658 34.8 70727466
tarbz2

32,299 315 7.8082913

Complemented

Binary Rep. (.zip} 20, 748 20.3 12.1553880

Table 1. Compression techniques. Ascending ordered by ratio.

Byies

252200
189150
126100

63050

zip R.B. tarbz2 C.B.R.

Technique

Onginal tar.gz jar

Figure 5 Compression methods considering data size resulting (Less
bytes is better). “B.R” means “Binary representation”. “C.B.R." means
“Complemented Binary Representation (.zip)".

Technique

CBR W
Aarbzl

B.K.

Aar gz
Origmal

{1 3.0388 6.0777 9.1165

Compression ratio

12,1554

Figure 6. Compression methods. Ordered by compression ratios.
(Bigger ratio is better). "B.R."” means “Binary Representation”. "C.B.R
means Complemented Binary Representation (.zip)".

revista de 'mgeni_e_r_i_aﬁ._

David Sanchez

As can be observed in table 1, the binary represen-
tation technique, “B.R.”, which only uses data mode-
ling, returns a ratio compression equivalent to other
methods which include modeling (although generic)
and entropy-coding (.zip, tar.gz, .jar, tar.bz2). Figure 5
shows a visual comparison of techniques considering
data size representing the information. Figure 6 shows
a visual comparison of techniques considering com-
pression ratio.

As can be observed intable 1, co mplemented binary
representation technique, “C.B.R.”, has a compression
ratio superior to other methods that include modeling
(although generic) and entropy-codification (.zip, tar.
gz, .jar, tar.bz2). Figure 5 shows a visual comparison
of techniques highlighting data size of the information.
Figure 6 shows a visual comparison of compression
technigues against compression ratio.

Improved compression ratio is possible due to the
previous information modeling. Compression time of
entropy-coding algorithm is small because it is being
done over previously compressed-by-modeling data.

“Complemented Binary Representation” was used
in the final solution of the project.

Conclusions

The main reason for the huge size of “Common
format” files is the representation of information using
statistically redundant data. Understanding the nature
of the represented information can achieve an enor-
mous increase in computer efficiency.

Researchers should not scrimp resources in the
correct use of computing power. Modeling is the most
difficult part of compression techniques since it is
related to the nature of the information itse!f. Most of
the time, modeling has to be done by the researcher
himself since he is the one who knows what needs to
be preserved.

Most of today’s computing problems try to be
solved by increasing hardware capabilities. However,
this article shows how a simple technique can bring
tasks previously thoughts as supercomputer realm to
portable computers.

In most situations, researchers would opt for a com-
mon compression technique, such as .zip, .jar, or .rar
without previously analyzing the data being considered.
Generic modeling is only marginally useful in most si-

tuations. Best results are achieved trough a complete
understanding of information nature.

As can be seen, synthetic information acquired
through NaSch simulators can be expressed using
byte arrays without statistically redundant data. Tur-
ning information into this low-level data representation
format offers a compression ratio as good as the more
sophisticated techniques that include both generic
modeling and entropy-coding algorithms.

Even better, applying a common compression algo-
rithm® over a previously compressed data by modeling
allows outstanding compression ratios [17]. In this case
an average of 12:1 compression ratio was achieved.
It is rare to achieve this high level compression with a
fast lossless algorithm; so once again, the importance
of modeling can be overestimated.

Thanks to the inclusion of the “Complemented
Binary Representation” compression technique, the
information tool developed was able to produce un-
derstandable animations of the given problems, using
just a portable computer.

Better use of resources can dramatically increase
the kind of problems that can be analyzed and solved.
Animation of those traffic problems opened the door
for future problems that would be too difficult or even
impossible to imagine with “Common Format” repre-
sentation. Among those problems are access roads,
distributors, service lanes, passing cars and many
others.

This research is not a definitive solution to the vehi-
cle flow compression-modeling problem. Further works
can refine the modeling technigue using Jots’ instead
of bytes. However, the complexity of the analysis could
rise exponentially and it would be more difficult to un-
derstand and apply by most researchers.

7. References

[1] A. Aponte and J. A. Moreno, “Cellular auto-
mata and its application ot the modeling of
vehicular traffic in the city of caracas,” Master’s
thesis, Centro de Investigacion y Desarrollo

6 [t wasused .zip because of its high speed, however, we pre-
sume results are valid for similar techniques.

7 Jotis aunit of dataequalto a 5- of abyte, where F repre-
sents an integer bigger than 8. Jot represents information
smaller than a bit[10]. Because the minimum electronic
representation is a bit, to achieve its purpose, Jot uses
meaning techniques of bit sets. That is why its definition is
made using bytes.

__mlgkhne 12

Compression of Synthetic-Vehicular-Traffic Flow using "Complemented Binary Representation”

de Ingenieria (CIDI), Facultad de Ingenieria
UCARB Venezuela, Laboratorio de Computacion
Emergente LACE, Facultad de Ingenieria UCV
Venezuela, 2006.

[2] A. Aponte and S. Buitrago, “Global optimiza-
tion in modeling vehicular traffic,” Centro de
investigacion y Desarrollo de Ingenierfa (CIDI),
Facultad de Ingenieria UCAB Venezuela, La-
boratorio de Computacion Emergente LACE,
Facultad de Ingenierfa UCV Venezuela, 2006.

[3] A. Aponte, S. Buitrago, and J. Moreno,
“Inappropriate use of the shoulder in highways.
impact over the increase of gas consumption,”
Centro de Investigacién y Desarrollo de In-
genieria (CIDI), Facultad de Ingenieria UCAB
Venezuela, Laboratorio de Computacion
Emergente LACE, Facultad de Ingenieria UCV
Venezuela, Departamento de Computo Cien-
tifico y Estadistica, USB, 2007.

[4] G. Poore, “Emergent phenomena in vehicular
traffic.” , May 2006.

[5] B.-H. Wang, L. Wang, and B. Hu, “Analytical
results for the steady state of traffic flow models
with stochastic delay,” The American Physical
Society, 1998.

[6] K. Nagel, D. Wolf, P. Wagner, and P. Simon,
“Two-lane traffic rules for ceflular automata: A
systematic approach,” Los Alamos National
Laboratory, 1997.

[7] T.Strutz, Bilddaten-Kompression (Image Data
Compression) ISBN 3-528-23922-0. Vieweg
Braunschweig/Wiesbaden, 3 ed., July 2005.

[8] G. Blelloch, “Introduction to data compres-
sion,” Computer Science Department Carnegie
Mellon University , October 2001.

[9] T. Halthill, “How safe is data compression?,”
Byte Magazine, vol. 19, no. 2, pp. 56-74,
1994.

[10] W. D. Withers, “A rapid entropy coding algori-
thm,” Dr. Dobb’s Journal, vol. 22, pp. 38-44,78,
April 1997.

[11] J. Lewis and N. Dale, Computer Science /llu-
minated ISBN 0763741493. Jones and Barlett
Publishers, 3 ed., 2006.

[12] Dale and Orshalick, /Introduction to Pascal and
Structured Design. Mc Graw Hill, 1 ed., 1986.

[13] ISO/IEC, “Iso/iec 8859 7-bit and 8-bit codes
and their extension.” , February 1998.

[14] P. C. Ramon Mata-Toledo, Introducction to
Computer Science. Shaun, Mc Graw Hill, 1 ed.,
2000.

[15] H. Schildt, Java 2: The Complete Reference.
Mc Graw Hill, 4 ed., 2003.

[16] D. Flanagan, Java in a Nutshell. Mc Graw Hill,
2 ed., 1997.

[17] W. Heriman, “Practical compressor test.” , July
2005.

revista de ingen i_e,r;iaﬁ]

David Sanchez

Appendices

A. Working program Scheme

Screen shots were taken from a Spanish set up be-
cause the program was created to werk in a “Spanish
language” environment.

Before running the program, a MySQL server must
be working. The MySQL database used in this article
was configured to run every time the computer was
turned on.

Once the program is running, the following steps
are performed:

1. A dialog shows up to start a local or remote
MySQL connection.

Once confirmed, this dialog creates a data
object that keeps the necessary pass phrase
to allow the database connection. This object
validates keys (Figure 7).

To achieve its work, the dialeg (Connection.java
class) creates a connection object to the data-
base. If this object (ConnectionDatz class) is
valid, by achieving a satisfactory authentication
to the database server, the ConnectionData
is automatically crafted into a new object that
will handle database queries. This object called
SQLQuerier (SQLQuery class) is responsible for
database communication using data kept safe
inside the connection object (Connectionba-
ta).

The dialog, as well as the object used to co-
llect data from the user (Connection object), is
erased from memory. After this operation, the
only way to access the database is through
SQLQuerier. It is not possible to medify con-
nection parameters,

Program Main Menu.

SQLQuerier object is inserted intc a “Palette”
class. This palette is an interface object which
allows the user to perform diverse actions such
as creating new searching windows (Figure
8).

Originally, the palette was designed to stay
abeve all windows, but this behavior was
changed due to user demand and its actual
behavior is like any other window.

3. “Rampa Acceso” (Inner) selection
his eption is in designing stage.

n

4. “lday Vuelta” (Two-way drive)

“Consultar” (Consulting) menu creates a new
window with all data found (Processed or non
processed information) as well as a tab to filter
information. A sample of this window can be
seen in figure 10.

“Consultar” windows have two “Tabs”. The
first one can be seen in figure 10. Buttons allow
the user to perform different operations on the
database. Those operations are:

Nuevo (New)

New data to be save in the database. Only
simulation entry data is editable.

Guardar (Safe)
Save data introduced.
Eliminar (Delete)

It allows erase info from the database. Deleting
requires a previously selected item. For safety
reasons, only one simulation can be erased at
atime.

Simular (Simulated)
It runs a C simulator library.
Ver (See)

It shows an animation with previously proces-
sed data by the C simulator.

A sample animation can be seen in figure 8.
This window includes the code that identifies it
in the database in the tile. It is possible to have
different open windows at the same time.

In the animation window, each dot represents
a vehicle.

Exportar (Export)

Export button (Currently disabled) allows se-
lected data to be saved in different formats.

The Searching (“Buscar”) tab allows entering
parameters to filter data from the database
(Figure 11).

Once data is introduced, the search is perfor-
med and the window shows the result in the
“Base de datos” (database) tab. If no para-
meters are specified, it returns all simulations
previously inserted (processed or not) in the
database.

___Elgkh_ne_lz

Compression of Synthetic-Vehicular-Traffic Flow using “Complemented Binary Representation”

{ratos de vonpaiio -
L 4 o W T BT 3 | gl T
Nombre de fa Dase 20 dates oo i i - T e e o ¢ 2 K ey - 1 i
Humers del puecte 35346 i
Nombrs def wingy i
Py e oy
el iR e
LORilar I
i 1
|
Figure 7. Screen to get connection parameters
i
:)
3
;o s U

Y Figure 10. This Window shows all data saved in the database ("lday
et vuelta” (Two-way lane) option).

Figure 8. Main Menu

Simulaches codigo: 3

i e
Ven it - Biita
¥ s ¥
Figure 9. Animation with processed data. "

Figure 11. Database Searching tab (“Ida y vuelta” Two-way lane option}.

e e . ____revistade inuenieria

David Sanchez

B. “Binary Representation” algorithm implemented

in Java

Due the small size of the algorithm, it was decided

to place it inside the Read.java class.

public void readFromFileCiclopeg() {

l_,_mt.e.k hne_12

try {

InputStream in = new FilelnputStream(outCiclopegFile);

it size=in.available();
byte b{]=new byte[size]:
in read(b):

in.close();
Striing s= new String(b 0 .s1z¢);

s = sreplace("0°,)'1°);
s = s.replace(’ b
s = s.replace(’

1)
201y
s = sreplace(’3°,"17)
4017
s = s.replace(’5"," 1),
s = s.replace(” ’,0’):

"

/IReplace

StringBuffer sb = new StringBuffer(s substring(1)):

int i=0;
while (i<sb.length()) {
if (sb.charAt(i)==") {
sb.dcleteCharAt(i):
b
B+
}

String bitConverterString=sb.toString():

int top = (bitConverterString.length()/7)+1;

byte[] bytes = new byte[top];

String n;

int j=0:

while (bitConverterString length()>7) {
n=bitConverterString.substring(0.7),
bytes[j] = Bytc.parseByte(n,2),

bitConverterString=bitConverterString substring(7);

JH+

¥

n=bitConverterString;

bvtes(j] = Byte.parseByte(n,2);

/Tt creates a reading mput stream to read
rroutCiclopegkile™ filc

//1t measures the size of the file is going to be
/read

/It creates a byte array the size of

//the file bemg 1ead

//Read all text file bytes and

//save them in b

//Close the tile

/1Tt creates a string with all read bytes
//converted to chars

/Replace O s by |

//Replace 2 s by
//Replace 3 s by
//Replace 4 s by
//Replace 5 s by
al white spaces by 0

It creates a string buffer to perform operations
/lon data

/fThis loops crases all line breaks

/[MTransform a String buffer into a new String
//Measures the byte array length

I/t creates the byte array

//Helping String

/ICounter

//Chop the string in 7 bits size picces

/[MTransforms 1 and 0 sequenccs in bytes
/[String chopped

/1t processes the last one

int answer = this.sqlQuerier.handleUpdateInOutAnimacionlda(code bytes);

/M1t saves in the database

t catch (FileNotFoundException el) System.err.println(File not found: “+ file):

catch (IOException e2) e2 printStack Trace(),

Compression of Synthetic-Vehicular-Traffic Flow using “Complemented Binary Representation”

C. "*Complemented Binary Representation” imple-
mented in Java

public void readFromFileCiclopeg() {
try {
InputStream in = new FilelnputStream(outCiclopegFile):
int size=in.available();
byte b j=new byte[size|:
in.read(b);

in.close();
String s= new String(b 0 size);

s.replace("0°.17);
=saeplace("27,717):

1)
1)
s.replace(’3°.°17);
1)
1"

vowmowmow
I

3
=s.replace(’4”)
s =s.qeplace(’>)
s =s.replace(’’.0%);

StringBuffer sb = new StringBuffer(s substring(1)):
int i=0;
while (i<sb.length()) {
if (sb.charAt(i)==")
sb.deleteCharAt(1):

1++,

¥

String bitConverterString=sb.toString();
int top = (bitConverterString length()/7)+1;
byte|] bytes = new byte[top];

int j=0;
while (bitConverterString.length(3>7) {

n=bitConverterString substring(0,7):
bytes|j| = Byte.parseByte(n,2);
bitConverterString=bitConverterString substring(7):
Jts

}

n=bitConverterString;

bytes[j| = Byte. parseByte(n 2);

FileOutputStream os = new HleOutputStream(“zip_cache™);
ZipOutputStream zos = new ZipOutputStream(os);

zos.putNextEntry(new ZipEntry(“zip_cache™));
zos.write(hytes):

zos.closcEntry();
zos.close ()

InputStream is = new FlelnputStream(“zip_cache™):

size=is.available();
byte compressedBf J=new byte[size]:

1s.read(compressedB):

1s.close();

int answer = this.sqlQuerier.handlcUpdateInOutAnimacionlda(code compressedB):

} catch (FileNotFoundException ¢1) System.crr.printin(*File not found: “+ file);

catch (IOException e2) e2 printStackTrace():

//It creates a stream to read the file
//Measures the size of the file to be read

/1t creates a byte array the same size of the file
//Read all bytes from the text file and

//saves themin b

/IClose the file

/It makes a string with all bytes read
/itransformed into chars

/f{Compression by modeling start

//Replace zeros by 1

//Replace 2 s by 1

//Replace 3 s by 1

//Replace 4 s by 1

{{Replace 5s by |

{/Replace white spaces by 0

/1t creates string buffer to perform operations
/[This loops crases line breaks

{1t transforms the string buffer into a string
/IMeasures array size

/1t makes byte array String n;

/Helping String

//Counter

//Chop the string in 7 bils size picces

/fTransform 1 and 0 sequences in bytes
//Chop the string

/Tt process the Jast one

{1t ends compression by data modeling
/It starts complemented compressing /(Modeling + entropy-coding)
/11t create an external file for data flow
/1t wraps the external file into a compress
/fformat

/i1t create header files

/It compresses previously model data
{{Closc data flow

/[Close file

//End of complemented compression
//Reading Compresscd file to send it to
{/database

/ICreates a reading strcam for the

/" outCiclopegFile™

/IMcasurc the size of reading file

/1t creates a byte array

/file size

//Read all bites from files and

{lsave them in compressedB

/IClose the file and ends compressed file
flrcading

/{Save in the database

revista de ingenieria m

